Alzheimer's disease severely compromises cognitive function. One of the mechanisms to explain the pathology of Alzheimer’s disease has been the hypotheses of amyloid-pore/channel formation by complex Aβ-aggregates. Clinical studies suggested the moderate alcohol consumption can reduces probability developing neurodegenerative pathologies. A recent report explored the ability of ethanol to disrupt the generation of complex Aβ in vitro and reduce the toxicity in two cell lines. Molecular dynamics simulations were applied to understand how ethanol blocks the aggregation of amyloid. On the other hand, the in silico modeling showed ethanol effect over the dynamics assembling for complex Aβ-aggregates mediated by break the hydrosaline bridges between Asp 23 and Lys 28, was are key element for amyloid dimerization. The amyloid pore/channel hypothesis has been explored only in neuronal models, however recently experiments suggested the frog oocytes such an excellent model to explore the mechanism of the amyloid pore/channel hypothesis. So, the used of frog oocytes to explored the mechanism of amyloid aggregates is new, mainly for amyloid/pore hypothesis. Therefore, this experimental model is a powerful tool to explore the mechanism implicates in the Alzheimer’s disease pathology and also suggests a model to prevent the Alzheimer’s disease pathology. [BMB Reports 2015; 48(1): 13-18]
Since the 1970s, There have been studies of the venom of Latrodectus sp. spiders, in particular the latrotoxin (LTX) of Latrodectus mactans. Many of the studies were aimed at understanding the action of the venom on the muscular system. Now accepted that LTX is able to generate a calcium-permeable membrane pore and modulate the release of synaptic vesicles that activate a receptor and induce cellular changes. Interestingly, when work began with venom obtained from the Latrodectus sp present in Chile, it generated clinical indications similar to the bite of this spider in another country, with some differences in intensity. The purpose of the first studies was to understand the systemic mechanisms of this venom, and other active compounds were studied for biological interest. It was found that these molecules are capable of causing systemic effects such as changes in muscle contraction; of generating vascular relaxation and synaptic and cellular modulation; and of altering potassium conductance channels. Based on this evidence, we suggested biotechnological applications to characterize low molecular-weight compounds obtained from the Chilean Latrodectus venom and exploring the effects on the electrophysiology in oocytes and neurons, and the contraceptive effect on spermatozoa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.