Differences in gene expression patterns have been documented not only in Multiple Sclerosis patients versus healthy controls but also in the relapse of the disease. Recently a new gene expression modulator has been identified: the microRNA or miRNA. The aim of this work is to analyze the possible role of miRNAs in multiple sclerosis, focusing on the relapse stage. We have analyzed the expression patterns of 364 miRNAs in PBMC obtained from multiple sclerosis patients in relapse status, in remission status and healthy controls. The expression patterns of the miRNAs with significantly different expression were validated in an independent set of samples. In order to determine the effect of the miRNAs, the expression of some predicted target genes of these were studied by qPCR. Gene interaction networks were constructed in order to obtain a co-expression and multivariate view of the experimental data. The data analysis and later validation reveal that two miRNAs (hsa-miR-18b and hsa-miR-599) may be relevant at the time of relapse and that another miRNA (hsa-miR-96) may be involved in remission. The genes targeted by hsa-miR-96 are involved in immunological pathways as Interleukin signaling and in other pathways as wnt signaling. This work highlights the importance of miRNA expression in the molecular mechanisms implicated in the disease. Moreover, the proposed involvement of these small molecules in multiple sclerosis opens up a new therapeutic approach to explore and highlight some candidate biomarker targets in MS.
Mitochondrial DNA depletion syndrome is a clinically heterogeneous group of disorders characterized by a reduction in mitochondrial DNA copy number. The recent discovery of mutations in the deoxyguanosine kinase (dGK) gene in patients with the hepatocerebral form of mitochondrial DNA depletion syndrome prompted us to screen 21 patients to determine the frequency of dGK mutations, further characterize the clinical spectrum, and correlate genotypes with phenotypes. We detected mutations in three patients (14%). One patient had a homozygous GATT duplication (nucleotides 763-766), and another had a homozygous GT deletion (nucleotides 609-610); both mutations lead to truncated proteins. The third patient was a compound heterozygote for two missense mutations (R142K and E227K) that affect critical residues of the protein. These mutations were associated with variable phenotypes, and their low frequencies suggests that dGK is not the only gene responsible for mitochondrial DNA depletion in liver. The patient with the missense mutations had isolated liver failure and responded well to liver transplantation, which may be a therapeutic option in selected cases.
We present here the clinical, molecular and biochemical findings from 238 limb-girdle muscular dystrophy type 2A (LGMD2A) patients, representing approximately 50% (238 out of 484) of the suspected calpainopathy cases referred for the molecular study of the calpain 3 (CAPN3) gene. The mean age at onset of LGMD2A patients was approximately 14 years, and the first symptoms occurred between 6 and 18 years of age in 71% of patients. The mean age at which the patients became wheelchair bound was 32.2 years, with 84% requiring the use of a wheelchair between the age of 21 and 40 years. There was no correlation between the age at onset and the time at which the patient became wheelchair bound, nor between the sex of the patient and the risk of becoming wheelchair bound. Of the cases where the CAPN3 gene was not affected, approximately 20% were diagnosed as LGMD2I muscular dystrophy, while facioscapulohumeral muscular dystrophy (FSHD) was uncommon in this sample. We identified 105 different mutations in the CAPN3 gene of which 50 have not been described previously. These were distributed throughout the coding region of the gene, although some exons remained free of mutations. The most frequent mutation was 2362AG-->TCATCT (exon 22), which was present in 30.7% of the chromosomes analysed (146 chromosomes). Other recurrent mutations described were N50S, 550DeltaA, G222R, IVS6-1G-->A, A483D, IVS17+1G-->T, 2069-2070DeltaAC, R748Q and R748X, each of which was found in >5 chromosomes. The type of mutation in the CAPN3 gene does not appear to be a risk factor for becoming dependent on a wheelchair at a determined age. However, in the cases with two null mutations, there were significantly fewer patients that were able to walk than in the group of patients with at least one missense mutation. Despite the fact that the results of phenotyping and western blot might be biased due to multiple referral centres, producing a diagnosis on the basis of the classical phenotype is neither sufficiently sensitive (86.7%) nor specific (69.3%), although western blot proved to be even less sensitive (52.5%) yet more specific (87.8%). In this case LGMD2I was a relevant cause of false-positive diagnoses. Considering both the clinical phenotype and the biochemical information together, the probability of correctly diagnosing a calpainopathy is very high (90.8%). However, if one of the analyses is lacking, the probability varies from 78.3 to 73.7% depending on the information available. When both tests are negative, the probability that the sample comes from a patient with LGMD2A was 12.2%.
We suggest that MPs play a role in MS pathogenesis, reflecting disease status with an increment of their shedding during inflammatory periods and turning to baseline during chronic progressive degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.