We have controllably modulated the drain current (I(D)) and threshold voltage (V(T)) in pseudo metal-oxide-semiconductor field-effect transistors (MOSFETs) by grafting a monolayer of molecules atop oxide-free H-passivated silicon surfaces. An electronically controlled series of molecules, from strong pi-electron donors to strong pi-electron acceptors, was covalently attached onto the channel region of the transistors. The device conductance was thus systematically tuned in accordance with the electron-donating ability of the grafted molecules, which is attributed to the charge transfer between the device channel and the molecules. This surface grafting protocol might serve as a useful method for controlling electronic characteristics in small silicon devices at future technology nodes.
In recent years, an increasing number of laboratories have been applying in situ heating (and ultimately, gas reaction) techniques in electron microscopy studies of catalysts and other nanophase materials. With the advent of aberration-corrected electron microscopes that provide sub-Angström image resolution, it is of great interest to study the behavior of materials at elevated temperatures while maintaining the resolution capabilities of the microscope. In collaboration with Protochips Inc., our laboratory is developing an advanced capability for in situ heating experiments that overcomes a number of performance problems with standard heating stage technologies. The new heater device allows, for example, temperature cycling from room temperature to greater than 1000 degrees C in 1 ms (a heating rate of 1 million Centigrade degrees per second) and cooling at nearly the same rate. It also exhibits a return to stable operation (drift controlled by the microscope stage, not the heater) in a few seconds after large temperature excursions. With Protochips technology, we were able to demonstrate single atom imaging and the behavior of nanocrystals at high temperatures, using high-angle annular dark-field imaging in an aberration-corrected (S)TEM. The new capability has direct applicability for remote operation and (ultimately) for gas reaction experiments using a specially designed environmental cell.
Molecular electronics seeks to build electrical devices to implement computation-logic and memory-using individual or small collections of molecules. These devices have the potential to reduce device size and fabrication costs, by several orders of magnitude, relative to conventional CMOS. However, the construction of a practical molecular computer will require the molecular switches and their related interconnect technologies to behave as large-scale diverse logic, with input/output wires scaled to molecular dimensions. It is unclear whether it is necessary or even possible to control the precise regular placement and interconnection of these diminutive molecular systems. This paper describes genetic algorithm-based simulations of molecular device structures in a nanocell where placement and connectivity of the internal molecular switches are not specifically directed and the internal topology is generally disordered. With some simplifying assumptions, these results show that it is possible to use easily fabricated nanocells as logic devices by setting the internal molecular switch states after the topological molecular assembly is complete. Simulated logic devices include an inverter, a NAND gate, an XOR gate and a 1-bit adder. Issues of defect and fault tolerance are addressed.
As a two-dimensional carbon nanomaterial, graphene has a high surface area and good chemical stability; therefore, its potential applicability in composite materials and as a catalyst support is high.Here, we report a facile process to decorate graphene sheets with well-dispersed Pd nanoparticles. By the in situ formation and adhesion of Pd nanoparticles to the thermally exfoliated graphene (TEG) sheets suspended in a solvent, a Pd/TEG composite was prepared and characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller (BET) surface area analysis. The migration and aggregation of Pd nanoparticles on the graphene sheets was directly observed by scanning transmission electron microscopy. As the composite was heated to 700 °C, there was little movement of the Pd nanoparticles; on heating to 800 °C, well below the melting temperature, the Pd nanoparticles began to migrate, coalesce, and agglomerate to form larger particles. The aggregation behavior was further confirmed by X-ray diffraction analysis of the Pd/ TEG composite before and after being annealed at 800 °C. The graphene sheets provided a real-time imaging platform with nanometer-scale thickness to study the thermal stability and migratory behavior of nanoscale materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.