A long-term, consistent, high-resolution climate dataset for the North American domain, as a major improvement upon the earlier global reanalysis datasets in both resolution and accuracy, is presented.
In this study, a global three-dimensional variational analysis system is formulated in model grid space. This formulation allows greater flexibility (e.g. inhomogeneity and anisotropy) for background error statistics. A simpler formulation, inhomogeneous only in the latitude direction, was chosen for these initial tests. The background error statistics are defined as functions of the latitudinal grid and are estimated with the NMC method. The horizontal scales of the variables are obtained through the variances of the variables and of their Laplacian. The vertical scales are estimated through the statistics of the vertical correlation of each variable and are applied locally using recursive filters. For the multivariate correlation between wind and mass fields, a statistical linear relationship between the stream function and the balanced part of temperature and surface pressure is assumed. A localized correlation between the velocity potential and the stream function is also used to account for the positive correlation between the vorticity and divergence in the planetary boundary layer. Horizontally, the global domain is divided into three pieces so that efficient spatial recursive filters can be used to spread out the information from the observation locations. This analysis system is tested against the operational Spectral Statistical-Interpolation analysis system at the National Centers for Environmental Prediction. The results indicate that 3D Var in physical space is as effective as 3D Var in spectral space in the extratropics and yields superior results in the tropics as a result of the latitude dependence of the background error statistics.
At the National Centers for Environmental Prediction (NCEP), a new three-dimensional variational data assimilation (3DVAR) analysis system was implemented into the operational Global Data Assimilation System (GDAS) on 1 May 2007. The new analysis system, the Gridpoint Statistical Interpolation (GSI), replaced the Spectral Statistical Interpolation (SSI) 3DVAR system, which had been operational since 1991. The GSI was developed at the Environmental Modeling Center at NCEP as part of an effort to create a more unified, robust, and efficient analysis scheme. The key aspect of the GSI is that it formulates the analysis in model grid space, which allows for more flexibility in the application of the background error covariances and makes it straightforward for a single analysis system to be used across a broad range of applications, including both global and regional modeling systems and domains.Due to the constraints of working with an operational system, the final GDAS package included many changes other than just a simple replacing of the SSI with the new GSI. The new GDAS package contained an upgrade to the Global Forecast System model, including a new vertical coordinate, as well as new features in the GSI that were never developed for the SSI. Some of these new features included changes to the observation selection, quality control, minimization algorithm, dynamic balance constraint, and assimilation of new observation types. The evaluation of the new system relative to the SSI-based system was performed for nearly an entire year of analyses and forecasts. The objective and subjective evaluations showed that the new package exhibited superior forecast performance relative to the old SSI-based system. The new system has been shown to improve forecast skill in the tropics and substantially reduce the short-term forecast error in the extratropics. This implementation has laid the groundwork for future scientific advancements in data assimilation at NCEP.
An ensemble Kalman filter-variational hybrid data assimilation system based on the gridpoint statistical interpolation (GSI) three-dimensional variational data assimilation (3DVar) system was developed. The performance of the system was investigated using the National Centers for Environmental Prediction (NCEP) Global Forecast System model. Experiments covered a 6-week Northern Hemisphere winter period. Both the control and ensemble forecasts were run at the same, reduced resolution. Operational conventional and satellite observations along with an 80-member ensemble were used. Various configurations of the system including oneor two-way couplings, with zero or nonzero weights on the static covariance, were intercompared and compared with the GSI 3DVar system. It was found that the hybrid system produced more skillful forecasts than the GSI 3DVar system. The inclusion of a static component in the background-error covariance and recentering the analysis ensemble around the variational analysis did not improve the forecast skill beyond the one-way coupled system with zero weights on the static covariance. The one-way coupled system with zero static covariances produced more skillful wind forecasts averaged over the globe than the EnKF at the 1-5-day lead times and more skillful temperature forecasts than the EnKF at the 5-day lead time. Sensitivity tests indicated that the difference may be due to the use of the tangent linear normal mode constraint in the variational system. For the first outer loop, the hybrid system showed a slightly slower (faster) convergence rate at early (later) iterations than the GSI 3DVar system. For the second outer loop, the hybrid system showed a faster convergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.