A new coupled global NCEP Reanalysis for the period 1979-present is now available, at much higher temporal and spatial resolution, for climate studies. T he first reanalysis at NCEP (all acronyms are defined in the appendix), conducted in the 1990s, resulted in the NCEP-NCAR reanalysis (Kalnay et al. 1996), or R1 for brevity, and ultimately covered many years, from 1948 to the present (Kistler et al. 2001). It is still being executed at NCEP, to the benefit of countless users for monthly, and even daily, updates of the current state of the atmosphere. At the same time, other reanalyses were being conducted, namely, ERA-15 (Gibson et al. 1997) was executed for a more limited period (1979-93) at the ECMWF, COLA conducted a short reanalysis covering the May 1982-November 1983 period (Paolino et al. 1995), and NASA GSFC conducted a reanalysis covering the 1980-94 period (Schubert et al. 1997). The general purpose of conducting reanalyses is to produce multiyear global state-of-the-art gridded representations of atmospheric states, generated by a constant model and a constant data assimilation system. To use the same model and data assimilation over a very long period was the great advance during the 1990s, because gridded datasets available before 1995 had been created in real time by ever-changing models and analysis methods, even by hand analyses prior to about 1965. The hope was that a reanalysis,
At the National Centers for Environmental Prediction (NCEP), a new three-dimensional variational data assimilation (3DVAR) analysis system was implemented into the operational Global Data Assimilation System (GDAS) on 1 May 2007. The new analysis system, the Gridpoint Statistical Interpolation (GSI), replaced the Spectral Statistical Interpolation (SSI) 3DVAR system, which had been operational since 1991. The GSI was developed at the Environmental Modeling Center at NCEP as part of an effort to create a more unified, robust, and efficient analysis scheme. The key aspect of the GSI is that it formulates the analysis in model grid space, which allows for more flexibility in the application of the background error covariances and makes it straightforward for a single analysis system to be used across a broad range of applications, including both global and regional modeling systems and domains.Due to the constraints of working with an operational system, the final GDAS package included many changes other than just a simple replacing of the SSI with the new GSI. The new GDAS package contained an upgrade to the Global Forecast System model, including a new vertical coordinate, as well as new features in the GSI that were never developed for the SSI. Some of these new features included changes to the observation selection, quality control, minimization algorithm, dynamic balance constraint, and assimilation of new observation types. The evaluation of the new system relative to the SSI-based system was performed for nearly an entire year of analyses and forecasts. The objective and subjective evaluations showed that the new package exhibited superior forecast performance relative to the old SSI-based system. The new system has been shown to improve forecast skill in the tropics and substantially reduce the short-term forecast error in the extratropics. This implementation has laid the groundwork for future scientific advancements in data assimilation at NCEP.
An ensemble Kalman filter-variational hybrid data assimilation system based on the gridpoint statistical interpolation (GSI) three-dimensional variational data assimilation (3DVar) system was developed. The performance of the system was investigated using the National Centers for Environmental Prediction (NCEP) Global Forecast System model. Experiments covered a 6-week Northern Hemisphere winter period. Both the control and ensemble forecasts were run at the same, reduced resolution. Operational conventional and satellite observations along with an 80-member ensemble were used. Various configurations of the system including oneor two-way couplings, with zero or nonzero weights on the static covariance, were intercompared and compared with the GSI 3DVar system. It was found that the hybrid system produced more skillful forecasts than the GSI 3DVar system. The inclusion of a static component in the background-error covariance and recentering the analysis ensemble around the variational analysis did not improve the forecast skill beyond the one-way coupled system with zero weights on the static covariance. The one-way coupled system with zero static covariances produced more skillful wind forecasts averaged over the globe than the EnKF at the 1-5-day lead times and more skillful temperature forecasts than the EnKF at the 5-day lead time. Sensitivity tests indicated that the difference may be due to the use of the tangent linear normal mode constraint in the variational system. For the first outer loop, the hybrid system showed a slightly slower (faster) convergence rate at early (later) iterations than the GSI 3DVar system. For the second outer loop, the hybrid system showed a faster convergence.
This work describes the formulation of a hybrid four-dimensional ensemble-variational (4DEnVar) algorithm and initialization options utilized within the National Centers for Environmental Prediction global data assimilation system. Initialization schemes that are proposed for use are the tangent-linear normal mode constraint, weak constraint digital filter, and a combination thereof.An observing system simulation experiment is carried out to evaluate the impact of utilizing hybrid 4DEnVar with various initialization techniques. The experiments utilize a dual-resolution configuration, where the ensemble is run at roughly half the resolution of the deterministic component. It is found that by going from 3D to 4D, analysis error is reduced for most variables and levels. The inclusion of a time-invariant static covariance when used without a normal mode-based strong constraint is found to have a small, positive impact on the analysis. The experiments show that the weak constraint digital filter degrades the quality of analysis, due to the use of hourly states to prescribe high-frequency noise. It is found that going from 3D to 4D ensemble covariances has a relatively larger impact in the extratropics, whereas the original inclusion of ensemble-based covariances was found to have the largest impact in the tropics. The improvements found in going from 3D to 4D covariances in the hybrid EnVar formulation are not as large as was found in Part I from the original introduction of the hybrid algorithm. The analyses generated by the 4D hybrid scheme are found to yield slightly improved extratropical height and wind forecasts, with smaller impacts on other variables and in general in the tropics.
The capability of all-sky microwave radiance assimilation in the Gridpoint Statistical Interpolation (GSI) analysis system has been developed at the National Centers for Environmental Prediction (NCEP). This development effort required the adaptation of quality control, observation error assignment, bias correction, and background error covariance to all-sky conditions within the ensemble–variational (EnVar) framework. The assimilation of cloudy radiances from the Advanced Microwave Sounding Unit-A (AMSU-A) microwave radiometer for ocean fields of view (FOVs) is the primary emphasis of this study. In the original operational hybrid 3D EnVar Global Forecast System (GFS), the clear-sky approach for radiance data assimilation is applied. Changes to data thinning and quality control have allowed all-sky satellite radiances to be assimilated in the GSI. Along with the symmetric observation error assignment, additional situation-dependent observation error inflation is employed for all-sky conditions. Moreover, in addition to the current radiance bias correction, a new bias correction strategy has been applied to all-sky radiances. In this work, the static background error variance and the ensemble spread of cloud water are examined, and the levels of cloud variability from the ensemble forecast in single- and dual-resolution configurations are discussed. Overall, the all-sky approach provides more realistic simulated brightness temperatures and cloud water analysis increments, and improves analysis off the west coasts of the continents by reducing a known bias in stratus. An approximate 10% increase in the use of AMSU-A channels 1–5 and a 12% increase for channel 15 are also observed. The all-sky AMSU-A radiance assimilation became operational in the 4D EnVar GFS system upgrade of 12 May 2016.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.