The aim of this study was to build an accurate computer-based model to study the water flow and drag force characteristics around and acting upon the human body while in a submerged streamlined position. Comparisons of total drag force were performed between an actual swimmer, a virtual computational fluid dynamics (CFD) model of the swimmer, and an actual mannequin based on the virtual model. Drag forces were determined for velocities between 1.5 m/s and 2.25 m/s (representative of the velocities demonstrated in elite competition). The drag forces calculated from the virtual model using CFD were found to be within 4% of the experimentally determined values for the mannequin. The mannequin drag was found to be 18% less than the drag of the swimmer at each velocity examined. This study has determined the accuracy of using CFD for the analysis of the hydrodynamics of swimming and has allowed for the improved understanding of the relative contributions of various forms of drag to the total drag force experienced by submerged swimmers.
The swimming start is typically broken into three sub-phases; on-block, flight, and underwater phases. While overall start performance is highly important to elite swimming, the contribution of each phase and important technical components within each phase, particularly with the new kick-start technique, has not been established. The aim of this study was to identify technical factors associated with overall start performance, with a particular focus on the underwater phase. A number of parameters were calculated from 52 starts performed by elite freestyle and butterfly swimmers. These parameters were split into above-water and underwater groupings, before factor analysis was used to reduce parameter numbers for multiple regression. For the above-water phases, 81% of variance in start performance was accounted for by take-off horizontal velocity. For the underwater water phase, 96% of variance was accounted for with time underwater in descent, time underwater in ascent and time to 10 m. Therefore, developing greater take-off horizontal velocity and focussing on the underwater phase by finding the ideal trajectory will lead to improved start performance.
This study aimed to determine if starting with the feet above the water (FAW) in male backstroke swimming resulted in faster start times (15-m time) than when the feet were underwater (FUW). It was hypothesised that setting higher on the wall would generate increased horizontal force and velocity, resulting in quicker starts. Twelve high-level male backstrokers performed three trials of the FAW and FUW techniques. A biomechanical swimming testing system comprising one force plate (1,000 Hz), four lateral-view (100Hz), and five overhead (50Hz) video cameras captured the swimmers' performance. Data for each participant's fastest trial for each technique were collated, grouped, and statistically analysed. Analysis included Wilcoxon, Spearman Rho correlation, and regression analysis. Wilcoxon results revealed a significantly faster start time for the FAW technique (p < 0.01). Peak horizontal force was significantly smaller for FAW (p = 0.02), while take-off horizontal velocity was significantly greater (p = 0.01). Regression analysis indicated take-off horizontal velocity to be a good predictor of start time for both techniques, and the horizontal displacement of the centre of mass for the FAW start.
BackgroundArtistic gymnastics is reported to have some of the highest injury rates in sports, which limits participation and often involves considerable medical expenses.PurposeTo critically appraise the epidemiological literature on injury patterns and risk factors in competitive artistic gymnastics.Study designSystematic review.MethodsSix databases were searched for articles that investigated injuries in competitive artistic gymnasts. Injury incidence, prevalence and risk factor data were extracted, alongside information on injury location, type, severity, nature and mechanism of injury. Quality and level of evidence were assessed using a modified Downs and Black quality index checklist and the Oxford Centre for Evidence-based Medicine guidelines.ResultsThe search identified 894 articles, with 22 eligible for inclusion. Descriptive analysis showed that injury incidence and prevalence varied from 0.3 to 3.6 injuries per gymnast (female=0.3–3.6, male=0.7) and 2.0–2.3 (female=2.0–2.3, male=2.0), respectively. Male gymnasts sustained mostly upper limb injuries, while female gymnast reported lower limb injuries. Floor was associated with the greatest number of injuries for both male and female gymnasts. Higher competitive level and exposure to competition were risk factors for gymnastics injury: age, body mass, body size, training duration and life stress were significant associated factors.ConclusionInjury incidence and prevalence results are substantial among artistic gymnasts of all competitive levels. Gymnasts who train at highly competitive levels and are exposed to competition environments are a greater risk of injury. Future researchers should implement consistent reporting methods.
Undulatory underwater swimming (UUS) is one of the major skills contributing to performance in competitive swimming. UUS has two phases- the upbeat is performed by hip extension and knee flexion, and the downbeat is the converse action. The purpose of this study was to determine which kinematic variables of the upbeat and downbeat are associated with prone UUS performance in an elite sample. Ten elite participants were filmed performing three prone 20 m UUS trials. Seven landmarks were manually digitised to calculate eighteen kinematic variables, plus the performance variable- horizontal centre of mass velocity (V). Mean V was significantly correlated with body wave velocity (upbeat r = 0.81, downbeat r = 0.72), vertical toe velocity (upbeat r = 0.71, downbeat r = 0.86), phase duration (upbeat r = -0.79), peak hip angular velocity (upbeat r = 0.73) and mean knee angular velocity (upbeat r = -0.63), all significant at P < 0.05. A multiple stepwise regression model explained 78% of variance in mean V. Peak toe velocity explained 72% of the variance, and mean body wave velocity explained an additional 6%. Elite swimmers should strive for a high peak toe velocity and a fast caudal transfer of momentum to optimise underwater undulatory swimming performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.