One of the main traditional tools used in scientific and engineering data spectral analysis is the Fourier Integral Transform and its high performance digital equivalent-the Fast Fourier Transform (FFT). Both carry strong a-priori assumptions about the source data, such as being linear and stationary, and of satisfying the Dirichlet conditions. A recent development at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), known as the Hilbert-Huang Transform (HHT), proposes a novel approach to the solution for the nonlinear class of spectral analysis problems. Using a-posteriori data processing based on the Empirical Mode Decomposition (EMD) sifting process (algorithm), followed by the normalized Hilbert Transform of the decomposed data, the HHT allows spectral analysis of nonlinear and nonstationary data. The EMD sifting process results in a non-constrained decomposition of a source numerical data vector into a finite set of Intrinsic Mode Functions (IMF). These functions form a nearly orthogonal, derived from the data basis (adaptive basis). The IMFs can be further analyzed for spectrum content by using the classical Hilbert Transform. A new engineering spectral analysis tool using HHT has been developed at NASA GSFC, the HHT Data Processing System (HHT-DPS). As the HHT-DPS has been successfully used and commercialized, new applications pose additional questions about the theoretical basis behind the HHT EMD algorithm. Why is the fastest changing component of a composite signal being sifted out first in the EMD sifting process? Why does the EMD sifting process seemingly converge and why does it converge rapidly? Does an IMF have a distinctive structure? Why are the IMFs nearly orthogonal? We address these questions and develop the initial theoretical background for the HHT. This will contribute to the development of new HHT processing options, such as real-time and 2-D processing using Field Programmable Gate Array (FPGA) computational resources, enhanced HHT synthesis, and will broaden the scope of HHT applications for signal processing.
This paper details the design architecture, design methodology, and the advantages of the SpaceCube v2.0 high performance data processing system for space applications.The purpose in building the SpaceCube v2.0 system is to create a superior high performance, reconfigurable, hybrid data processing system that can be used in a multitude of applications including those that require a radiation hardened and reliable solution. The SpaceCube v2.0 system leverages seven years of board design, avionics systems design, and space flight application experiences.This paper shows how SpaceCube v2.0 solves the increasing computing demands of space data processing applications that cannot be attained with a standalone processor approach.The main objective during the design stage is to find a good system balance between power, size, reliability, cost, and data processing capability. These design variables directly impact each other, and it is important to understand how to achieve a suitable balance. This paper will detail how these critical design factors were managed including the construction of anEngineering Model for an experiment on the International Space Station to test out design concepts. We will describe the designs for the processor card, power card, backplane, and a mission unique interface card. The mechanical design for the box will also be detailed since it is critical in meeting the stringent thermal and structural requirements imposed by the processing system. In addition, the mechanical design uses advanced thermal conduction techniques to solve the internal thermal challenges.The SpaceCube v2.0 processing system is based on an extended version of the 3U cPCI standard form factor where each card is 190mm x IOOmm in size. The typical power draw of the processor card is 8 to lOW and scales with application complexity. The SpaceCube v2.0 data processing card features two Xilinx Virtex-5 QV Field Programmable Gate Arrays (FPGA), eight memory modules, a monitor FPGA with analog monitoring, Ethernet, configurable interconnect to the Xilinx FPGAs including gigabit transceivers, and the necessary voltage regulation. The processor board uses a back-to-back design methodology for common parts that maximizes the board real estate available. This paper will show how to meet the IPC 6012B Class 3/A standard with a 22-layer board that has two column grid array devices with 1.0mm pitch. All layout trades such as stack-up options, via selection, and FPGA signal breakout will be discussed with feature size results. The overall board design process will be discussed including parts selection, circuit design, proper signal termination, layout placement and route planning, signal integrity design and verification, and power integrity results. The radiation mitigation techniques will also be detailed including configuration scrubbing options, Xilinx circuit mitigation and FPGA functional monitoring, and memory protection. U.S. Government work not protected by U.S. copyrightFinally, this paper will describe how this system is bein...
This paper highlights the methodology and effectiveness of adapting the reconfigurable SpaceCube system to solve complex application requirements for a variety of space flight missions. SpaceCube is a reconfigurable, modular, compact, multi-processing platform for space flight applications demanding extreme processing power. The SpaceCube system is suitable for most mission applications, particularly those that are computationally and data intensive such as instrument science data processing. We will show how the SpaceCube hybrid processing architecture is used to meet data processing performance requirements that traditional flight processors cannot meet. This paper discusses the flexible computational architecture of the SpaceCube system and its inherent advantages over other avionics systems. The SpaceCube v1.0 processing system features two commercial Xilinx Virtex-4 FX60 Field Programmable Gate Arrays (FPGA), each with two embedded PowerPC405 processors. The FPGAs are mounted in an innovative back-to-back method, which reduces the size of the circuit board design while maintaining the added benefit of two FPGAs. All SpaceCube v1.0 cards are 4" x 4", yielding a small, yet powerful hybrid computing system. The architecture exploits the Xilinx FPGAs, PowerPCs, and necessary support peripherals to maximize system flexibility. Adding to the flexibility, the entire system is modular. Each card conforms to a custom mechanical standard that allows stacking multiple cards in the same box. This paper will detail the use of SpaceCube in multiple space flight applications including the Hubble Space Telescope Servicing Mission 4 (HST-SM4), an International Space Station (ISS) radiation test bed experiment, and the main avionics subsystem for two separate ISS attached payloads. Each mission has had varying degrees of data processing complexities, performance requirements, and external interfaces. We will show the methodology used to minimize the changes required to the physical hardware, FPGA designs, embedded software interfaces, and testing. This paper will summarize significant results as they apply to each mission application. In the HST-SM4 application we utilized the FPGA resources to accelerate portions of the image processing algorithms more than 25 times faster than a standard space processor in order to meet computational speed requirements. For the ISS radiation on-orbit demonstration, the main goal is to show that we can rely on the commercial FPGAs and processors in a space environment. We describe our FPGA and processor radiation mitigation strategies that have resulted in our eight PowerPCs being available and error free for more than 99.99% of the time over the period of four years. This positive data and proven reliability of the SpaceCube on ISS resulted in the Department of Defense (DoD) selecting SpaceCube, which is replacing an older and u.s. Government work not protected by U.S. copyright slower computer currently used on ISS, as the main avionics for two upcoming ISS experiment campaigns. This paper...
Abstract-Sensitivity of a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects is presented. Devices tested include digital, linear, and hybrid devices.Index Terms-Single Event Effects, spacecraft electronics, digital, linear bipolar, and hybrid devices.In order to meet the demands of reduced cost. higher performance and more rapid delivery schedules imposed by the space flight community, commercial and emerging technology devices have assumed a prominent role in meeting these needs. The importance of ground-based testing of such devices for susceptibility to single event effects (SEE) has assumed greater importance. The novel ways in which some of these devices are used also highlights the need for application specific testing to ensure their proper operation and ability to meet mission goals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.