Purpose To investigate the correlation between retinal and choroidal microperfusion in patients with systemic sclerosis (SSc) using optical coherence tomography angiography (OCTA). Methods In this cross-sectional study SSc patients without clinical evidence of ocular involvement and healthy, age- and sex-matched volunteers were recruited. Participants underwent specific rheumatological and ophthalmological examinations, including optical coherence tomography (OCT) and OCTA. Retinal and choroidal thicknesses as well as perfusion of the retina and the choroidal sublayers were evaluated. Results A total of 15 SSc patients (30 eyes) with a median disease duration of 60 months and 15 matched, healthy controls (30 eyes) were recruited. OCT data revealed a significantly lower macular volume, as well as Sattler’s layer and Haller’s layer thickness in SSc patients compared to controls. In OCTA analysis, the perfusion of both retinal plexus as well as Sattler’s and Haller’s layer were significantly reduced in the SSc group. Patients with a disease duration of more than 60 months showed a statistically significant positive correlation between retinal and choroidal malperfusion, while those with a shorter disease duration did not. Conclusion OCTA analysis confirmed impairment of retinal and choroidal microperfusion in SSc patients, supporting the hypothesis of wide spreading vascular injury. In early stages, either the retinal or the choroidal perfusion seems to be involved, while later on, vascular impairment affects both tissues alike. Both, retinal and choroidal examinations should be considered as soon as the diagnosis of SSc is made, to avoid missing out on early alterations.
(1) Background: Calculation of vessel density in optical coherence tomography angiography (OCTA) images with thresholding algorithms varies in clinical routine. The ability to discriminate healthy from diseased eyes based on perfusion of the posterior pole is critical and may depend on the algorithm applied. This study assessed comparability, reliability, and ability in the discrimination of commonly used automated thresholding algorithms. (2) Methods: Vessel density in full retina and choriocapillaris slabs were calculated with five previously published automated thresholding algorithms (Default, Huang, ISODATA, Mean, and Otsu) for healthy and diseased eyes. The algorithms were investigated with LD-F2-analysis for intra-algorithm reliability, agreement, and the ability to discriminate between physiological and pathological conditions. (3) Results: LD-F2-analyses revealed significant differences in estimated vessel densities for the algorithms (p < 0.001). For full retina and choriocapillaris slabs, intra-algorithm values range from excellent to poor, depending on the applied algorithm; the inter-algorithm agreement was low. Discrimination was good for the full retina slabs, but poor when applied to the choriocapillaris slabs. The Mean algorithm demonstrated an overall good performance. (4) Conclusions: Automated threshold algorithms are not interchangeable. The ability for discrimination depends on the analyzed layer. Concerning the full retina slab, all of the five evaluated automated algorithms had an overall good ability for discrimination. When analyzing the choriocapillaris, it might be useful to consider another algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.