Cell-surface receptors frequently employ scaffold proteins to recruit cytoplasmic targets, but the rationale for this is uncertain. Activated receptor tyrosine kinases, for example, engage scaffolds such as Shc1 that contain phosphotyrosine (pTyr) binding (PTB) domains. Using quantitative mass spectrometry, we find that Shc1 responds to epidermal growth factor (EGF) stimulation through multiple waves of distinct phosphorylation events and protein interactions. Following stimulation, Shc1 rapidly binds a group of proteins that activate pro-mitogenic/survival pathways dependent on recruitment of the Grb2 adaptor to Shc1 pTyr sites. Akt-mediated feedback phosphorylation of Shc1 Ser29 then recruits the Ptpn12 tyrosine phosphatase. This is followed by a sub-network of proteins involved in cytoskeletal reorganization, trafficking and signal termination that binds Shc1 with delayed kinetics, largely through the SgK269 pseudokinase/adaptor protein. Ptpn12 acts as a switch to convert Shc1 from pTyr/Grb2-based signaling to SgK269-mediated pathways that regulate cell invasion and morphogenesis. The Shc1 scaffold therefore directs the temporal flow of signaling information following EGF stimulation.
Tumour expression of the urokinase plasminogen activator correlates with invasive capacity. Consequently, inhibition of this serine protease by physiological inhibitors should decrease invasion and metastasis. However, of the two main urokinase inhibitors, high tumour levels of the type 1 inhibitor actually promote tumour progression, whereas high levels of the type 2 inhibitor decrease tumour growth and metastasis. We propose that the basis of this apparently paradoxical action of two similar serine protease inhibitors lies in key structural differences controlling interactions with components of the extracellular matrix and endocytosis-signalling co-receptors.
Signaling pathways control cell-fate decisions that ultimately determine the behavior of cancer cells.Therefore, the dynamics of pathway activity may contain prognostically relevant information different from that contained in the static nature of other types of biomarkers. To investigate this hypothesis, we characterized the network that regulated stress signaling by the Jun N-terminal kinase (JNK) pathway in neuroblastoma cells. We generated an experimentally calibrated and validated computational model of this network and used the model to extract prognostic information from neuroblastoma patient-specific simulations of JNK activation. Switch-like JNK activation mediates cell death by apoptosis. An inability to initiate switch-like JNK activation in the simulations was significantly associated with poor overall survival for patients with neuroblastoma with or without MYCN amplification, indicating that patientspecific simulations of JNK activation could stratify patients. Furthermore, our analysis demonstrated that extracting information about a signaling pathway to develop a prognostically useful model requires understanding not only components and disease-associated changes in the abundance or activity of the components, but how those changes affect pathway dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.