A case is made for growth of a new metadiscipline of sustainability science and engineering. This new field integrates industrial, social, and environmental processes in a global context. The skills required for this higher level discipline represent a metadisciplinary endeavor, combining information and insights across multiple disciplines and perspectives with the common goal of achieving a desired balance among economic, environmental, and societal objectives. Skills and capabilities that are required to support the new metadiscipline are summarized. Examples of integrative projects are discussed in the areas of sustainability metrics and integration of industrial, societal, and environmental impacts. It is clear that a focus on green engineering that employs pollution prevention and industrial ecology alone are not sufficient to achieve sustainability, because even systems with efficient material and energy use can overwhelm the carrying capacity of a region or lead to other socially unacceptable outcomes. To meet the educational and human resource needs required for this new discipline, the technological and environmental awareness of society must be elevated and a sufficient and diverse pool of human talent must be attracted to this discipline.
As population and water demand increase, there is a growing need for alternative water supplies from water reuse and desalination systems. These systems are beneficial to water augmentation; however, there are concerns related to their carbon footprint. This study compiles the reported carbon footprint of these systems from existing literature, recognizes general trends of carbon footprint of water reuse and desalination, and identifies challenges associated with comparing the carbon footprint. Furthermore, limitations, challenges, knowledge gaps, and recommendations associated with carbon footprint estimation tools are presented. Reverse osmosis (RO) technologies were found to have lower CO 2 emissions than thermal desalination technologies and the estimated carbon footprint of seawater RO desalination (0.4-6.7 kg CO 2 eq/m 3 ) is generally larger than brackish water RO desalination (0.4-2.5 kg CO 2 eq/m 3 ) and water reuse systems (0.1-2.4 kg CO 2 eq/m 3 ). The large range of reported values is due to variability in location, technologies, life cycle stages, parameters considered, and estimation tools, which were identified as major challenges to making accurate comparisons. Carbon footprint estimation tools could be improved by separating emissions by unit process, direct and indirect emissions, and considering the offset potential of various resource recovery strategies.
The solutions to the world's current and future problems require that engineers and scientists design and construct ecologically and socially just systems within the carrying capacity of nature without compromising future generations. In addition, as governments move towards policies that promote an international marketplace, educators need to prepare students to succeed in the global economy. Young people entering the workforce in the upcoming decades will also have the opportunity to play a critical role in the eradication of poverty and hunger and facilitation of sustainable development, appropriate technology, beneficial infrastructure, and promotion of change that is environmentally and socially just.Many universities espouse the idea that discipline integration is a prerequisite for successful implementation of sustainability in education. However, few engineering curriculum have taken the step to integrate concepts of sustainable development with an international experience. This paper discusses the educational and global drivers for curricular change in this important area and demonstrates how several undergraduate and graduate programmes initiated at Michigan Technological University can provide a more interdisciplinary basis for educating engineers on global concepts of sustainability. To date, these programmes have taken place in 21 countries and reached approximately 300 students (49% women) that represent 11 engineering disciplines and nine non-engineering disciplines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.