The stress-induced expression of four different ubiquitin-encoding cDNAs was characterized in potato tuber tissue. The four clones exhibited differences in both structure and expression. The first cDNA encoded a single ubiquitin unit fused to an 80 amino acid ribosomal extension protein identical to the extension protein from tomato. Accumulation of the fusion transcript was induced by injury or ethylene, but not by heat shock. The three remaining ubiquitin cDNAs encoded polyubiquitins with 6 to 7 ubiquitin repeats. The first polyubiquitin gene was induced by injury, heat, or ethylene treatments. The second was induced also by injury or heat, with limited ethylene-dependent accumulation of transcript. Transcript levels of the third polyubiquitin gene were highest in control tubers and decreased markedly with injury, heat shock, or ethylene treatment. The data demonstrate the independent regulation of the different members of the ubiquitin gene family in response to stress and exogenous ethylene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.