Reactive stroma in prostate cancer and granulation tissue in wound repair show similar biological responses and processes that are predicted to promote cancer progression. Further identification of specific functional and regulatory mechanisms in prostate cancer reactive stroma may aid in the use of reactive stroma for novel diagnostic and therapeutic approaches.
Purpose: Perineural invasion is the only interaction between cancer cells and nerves studied to date. It is a symbiotic relationship between cancer and nerves that results in growth advantage for both. In this article, we present data on a novel biological phenomenon, cancer-related axonogenesis and neurogenesis. Experimental Design: We identify spatial and temporal associations between increased nerve density and preneoplastic and neoplastic lesions of the human prostate. Results: Nerve density was increasedin cancer areas as well as in preneoplastic lesions compared with controls. Two-and three-dimensional reconstructions of entire prostates confirmed axonogenesis in human tumors. Furthermore, patients with prostate cancer had increased numbers of neurons in their prostatic ganglia compared with controls, corroborating neurogenesis. Finally, two in vitro models confirmed that cancer cells, particularly when interacting with nerves in perineural invasion, induce neurite outgrowth in prostate cancer. Neurogenesis is correlated with features of aggressive prostate cancer and with recurrence in prostate cancer.We also present a putative regulatory mechanism based on semaphorin 4F (S4F). S4F is overexpressed in cancers cells in the perineural in vitro model. Overexpression of S4F in prostate cancer cells induces neurogenesis in the N1E-115 neurogenesis assay and S4F inhibition by small interfering RNA blocks this effect. Conclusions: This is the first description of cancer-related neurogenesis and its putative regulatory mechanism.Nerves play a fundamental role not only in the biology of prostate cancer but also in the normal prostate epithelium. The prostate is thoroughly innervated and receives autonomic innervation through the hypogastric and pelvic nerves (1). Our studies of prostate nerve density in a group of cancer-free patients have shown that nerve density of the peripheral zone, where prostate cancer is more frequent, is significantly greater than that of the transition zone. Both overall nerve density and peripheral zone nerve density decrease with increasing age.Nerves have numerous interactions with the epithelial and stromal components of the prostate. Nerves are involved in prostate development and maintenance of the adult phenotype. Several reports have shown that mechanical and/or chemical denervation of the pelvic plexus of Sprague-Dawley and Wistar rats and dogs causes morphologic and functional changes in the prostate (2 -6). Denervated prostates have an overall decrease in cell height and secretory reduction (3). In humans and rats, the embryologic formation of the prostate requires intact innervation. Maturation of the prostate during adolescence also requires the presence of nerves. These findings strongly suggest that prostate function not only is regulated by androgens but also is subject to the trophic influences of nerves (5,7,8).The best-known interaction between nerves and cancer in prostate cancer is perineural invasion (PNI), the process by which cancer cells invade around ne...
Reactive stroma initiates during early prostate cancer development and co-evolves with prostate cancer progression. Previous studies have defined the key markers of reactive stroma and have established that reactive stroma biology influences prostate tumorigenesis and progression. The stem/progenitor cells of origin and the mechanisms that regulate their recruitment and activation to myofibroblasts or carcinoma-associated fibroblasts are essentially unknown. Key regulatory factors have been identified, including transforming growth factor beta, interleukin-8, fibroblast growth factors, connective tissue growth factor, wingless homologs-Wnts, and stromal cell-derived factor-1, among others. The biology of reactive stroma in cancer is similar to the more predictable biology of the stroma compartment during wound repair at sites where the epithelial barrier function is breached and a stromal response is generated. The co-evolution of reactive stroma and the biology of how reactive stroma - carcinoma interactions regulate cancer progression and metastasis are targets for new therapeutic approaches. Such approaches are strategically designed to inhibit cancer progression by uncoupling the reactive stroma niche.
Lineage plasticity has emerged as an important mechanism of treatment resistance in prostate cancer. Treatmentrefractory prostate cancers are increasingly associated with loss of luminal prostate markers, and in many cases induction of developmental programs, stem cell-like phenotypes, and neuroendocrine/neuronal features. Clinically, lineage plasticity may manifest as low PSA progression, resistance to androgen receptor (AR) pathway inhibitors, and sometimes small cell/neuroendocrine pathologic features observed on metastatic biopsy. This mechanism is not restricted to prostate cancer as other malignancies also demonstrate lineage plasticity during resistance to targeted therapies. At present, there is no established therapeutic approach for patients with advanced prostate cancer developing lineage plasticity or small cell neuroendocrine prostate cancer (NEPC) due to knowledge gaps in the underlying biology. Few clinical trials address questions in this space, and the outlook for patients remains poor. To move forward, urgently needed are: (i) a fundamental understanding of how lineage plasticity occurs and how it can best be defined; (ii) the temporal contribution and cooperation of emerging drivers; (iii) preclinical models that recapitulate biology of the disease and the recognized phenotypes; (iv) identification of therapeutic targets; and (v) novel trial designs dedicated to the entity as it is defined. This Perspective represents a consensus arising from the NCI Workshop on Lineage Plasticity and Androgen Receptor-Independent Prostate Cancer. We focus on the critical questions underlying lineage plasticity and AR-independent prostate cancer, outline knowledge and resource gaps, and identify strategies to facilitate future collaborative clinical translational and basic studies in this space.
Cancer-associated fibroblasts (CAFs), the principle component of the tumor-associated stroma, form a highly protumorigenic and immunosuppressive microenvironment that mediates therapeutic resistance. Co-targeting CAFs in addition to cancer cells may therefore augment the antitumor response. Fibroblast activation protein-α (FAP), a type 2 dipeptidyl peptidase, is expressed on CAFs in a majority of solid tumors making it an attractive immunotherapeutic target. To target FAP-positive CAFs in the tumor-associated stroma, we genetically modified T cells to express a FAP-specific chimeric antigen receptor (CAR). The resulting FAP-specific T cells recognized and killed FAP-positive target cells as determined by proinflammatory cytokine release and target cell lysis. In an established A549 lung cancer model, adoptive transfer of FAP-specific T cells significantly reduced FAP-positive stromal cells, with a concomitant decrease in tumor growth. Combining these FAP-specific T cells with T cells that targeted the EphA2 antigen on the A549 cancer cells themselves significantly enhanced overall antitumor activity and conferred a survival advantage compared to either alone. Our study underscores the value of co-targeting both CAFs and cancer cells to increase the benefits of T-cell immunotherapy for solid tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.