SUMMARY Annotation of prostate cancer genomes provides a foundation for discoveries that can impact disease understanding and treatment. Concordant assessment of DNA copy number, mRNA expression, and focused exon resequencing in 218 prostate cancer tumors identified the nuclear receptor coactivator NCOA2 as an oncogene in ~11 percent of tumors. Additionally, the androgen-driven TMPRSS2-ERG fusion was associated with a previously unrecognized, prostate-specific deletion at chromosome 3p14 that implicates FOXP1, RYBP and SHQ1 as potential cooperative tumor suppressors. DNA copy-number data from primary tumors revealed that copy-number alterations robustly define clusters of low- and high-risk disease beyond that achieved by Gleason score. The genomic and clinical outcome data from these patients is now made available as a public resource.
SUMMARY Toward development of a precision medicine framework for metastatic, castration resistant prostate cancer (mCRPC), we established a multi-institutional clinical sequencing infrastructure to conduct prospective whole exome and transcriptome sequencing of bone or soft tissue tumor biopsies from a cohort of 150 mCRPC affected individuals. Aberrations of AR, ETS genes, TP53 and PTEN were frequent (40–60% of cases), with TP53 and AR alterations enriched in mCRPC compared to primary prostate cancer. We identified novel genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, β-catenin and ZBTB16/PLZF. Aberrations of BRCA2, BRCA1 and ATM were observed at substantially higher frequencies (19.3% overall) than seen in primary prostate cancers. 89% of affected individuals harbored a clinically actionable aberration including 62.7% with aberrations in AR, 65% in other cancer-related genes, and 8% with actionable pathogenic germline alterations. This cohort study provides evidence that clinical sequencing in mCRPC is feasible and could impact treatment decisions in significant numbers of affected individuals.
Enzalutamide significantly prolonged the survival of men with metastatic castration-resistant prostate cancer after chemotherapy. (Funded by Medivation and Astellas Pharma Global Development; AFFIRM ClinicalTrials.gov number, NCT00974311.).
BACKGROUND Biosynthesis of extragonadal androgen may contribute to the progression of castration-resistant prostate cancer. We evaluated whether abiraterone acetate, an inhibitor of androgen biosynthesis, prolongs overall survival among patients with metastatic castration-resistant prostate cancer who have received chemotherapy. METHODS We randomly assigned, in a 2:1 ratio, 1195 patients who had previously received docetaxel to receive 5 mg of prednisone twice daily with either 1000 mg of abiraterone acetate (797 patients) or placebo (398 patients). The primary end point was overall survival. The secondary end points included time to prostate-specific antigen (PSA) progression (elevation in the PSA level according to prespecified criteria), progression-free survival according to radiologic findings based on prespecified criteria, and the PSA response rate. RESULTS After a median follow-up of 12.8 months, overall survival was longer in the abiraterone acetate–prednisone group than in the placebo–prednisone group (14.8 months vs. 10.9 months; hazard ratio, 0.65; 95% confidence interval, 0.54 to 0.77; P<0.001). Data were unblinded at the interim analysis, since these results exceeded the preplanned criteria for study termination. All secondary end points, including time to PSA progression (10.2 vs. 6.6 months; P<0.001), progression-free survival (5.6 months vs. 3.6 months; P<0.001), and PSA response rate (29% vs. 6%, P<0.001), favored the treatment group. Mineralocorticoid-related adverse events, including fluid retention, hypertension, and hypokalemia, were more frequently reported in the abiraterone acetate–prednisone group than in the placebo–prednisone group. CONCLUSIONS The inhibition of androgen biosynthesis by abiraterone acetate prolonged overall survival among patients with metastatic castration-resistant prostate cancer who previously received chemotherapy. (Funded by Cougar Biotechnology; COU-AA-301 ClinicalTrials.gov number, NCT00638690.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.