SUMMARY Toward development of a precision medicine framework for metastatic, castration resistant prostate cancer (mCRPC), we established a multi-institutional clinical sequencing infrastructure to conduct prospective whole exome and transcriptome sequencing of bone or soft tissue tumor biopsies from a cohort of 150 mCRPC affected individuals. Aberrations of AR, ETS genes, TP53 and PTEN were frequent (40–60% of cases), with TP53 and AR alterations enriched in mCRPC compared to primary prostate cancer. We identified novel genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, β-catenin and ZBTB16/PLZF. Aberrations of BRCA2, BRCA1 and ATM were observed at substantially higher frequencies (19.3% overall) than seen in primary prostate cancers. 89% of affected individuals harbored a clinically actionable aberration including 62.7% with aberrations in AR, 65% in other cancer-related genes, and 8% with actionable pathogenic germline alterations. This cohort study provides evidence that clinical sequencing in mCRPC is feasible and could impact treatment decisions in significant numbers of affected individuals.
Characterization of the prostate cancer transcriptome and genome has identified chromosomal rearrangements and copy number gains/losses, including ETS gene fusions, PTEN loss and androgen receptor (AR) amplification, that drive prostate cancer development and progression to lethal, metastatic castrate resistant prostate cancer (CRPC)1. As less is known about the role of mutations2–4, here we sequenced the exomes of 50 lethal, heavily-pretreated metastatic CRPCs obtained at rapid autopsy (including three different foci from the same patient) and 11 treatment naïve, high-grade localized prostate cancers. We identified low overall mutation rates even in heavily treated CRPC (2.00/Mb) and confirmed the monoclonal origin of lethal CRPC. Integrating exome copy number analysis identified disruptions of CHD1, which define a subtype of ETS fusionnegative prostate cancer. Similarly, we demonstrate that ETS2, which is deleted in ~1/3 of CRPCs (commonly through TMPRSS2:ERG fusions), is also deregulated through mutation. Further, we identified recurrent mutations in multiple chromatin/histone modifying genes, including MLL2 (mutated in 8.6% of prostate cancers), and demonstrate interaction of the MLL complex with AR, which is required for AR-mediated signaling. We also identified novel recurrent mutations in the AR collaborating factor FOXA1, which is mutated in 5 of 147 (3.4%) prostate cancers (both untreated localized prostate cancer and CRPC), and showed that mutated FOXA1 represses androgen signaling and increases tumour growth. Proteins that physically interact with AR, such as the ERG gene fusion product, FOXA1, MLL2, UTX, and ASXL1 were found to be mutated in CRPC. In summary, we describe the mutational landscape of a heavily treated metastatic cancer, identify novel mechanisms of AR signaling deregulated in prostate cancer, and prioritize candidates for future study.
Long non-coding RNAs (lncRNAs) are emerging as important regulators of tissue physiology and disease processes including cancer. In order to delineate genome-wide lncRNA expression, we curated 7,256 RNA-Seq libraries from tumors, normal tissues, and cell lines comprising over 43 terabases of sequence from 25 independent studies. We applied ab initio assembly methodology to this dataset, yielding a consensus human transcriptome of 91,013 expressed genes. Over 68% (58,648) of genes were classified as lncRNAs, of which 79% (48,952) were previously unannotated. About 1% (597) of the lncRNAs harbored ultraconserved elements and 7% (3,900) overlapped disease-associated single nucleotide polymorphisms (SNPs). To prioritize lineage-specific, disease-associated lncRNA expression we employed non-parametric differential expression testing and nominated 7,942 lineage- or cancer-associated lncRNA genes. The lncRNA landscape characterized here may shed light into normal biology and cancer pathogenesis, and be valuable for future biomarker development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.