Covering 55% of Canada’s total surface area and stretching from coast to coast to coast, the Canadian boreal zone is crucial to the nation’s economic and ecological integrity. Although often viewed as relatively underdeveloped, it is vulnerable to numerous stressors such as mining, forestry, and anthropogenic climate change. Natural archives preserved in lake sediments can provide key insights by quantifying pre-disturbance conditions (pre-1850 CE) and the nature, magnitude, direction, and speed of environmental change induced by anthropogenic stressors over the past ~150 years. Here, we paired a review of paleolimnological literature of the Canadian boreal zone with analyses of published sediment core data to highlight the effects of climate change, catchment disturbances, and atmospheric deposition on boreal lakes. Specifically, we conducted quantitative syntheses of two lake health indicators: elemental lead (Pb) and chlorophyll <i>a</i>. Segmented regressions and Mann-Kendall trend analysis revealed a generally increasing trend in elemental Pb across the boreal zone until ~1970 CE, followed by a generally decreasing trend to the present. Snapshot comparisons of sedimentary chlorophyll <i>a</i> from recent and pre-industrial sediments (i.e., top-bottom sediment core design) revealed that a majority of sites have increased over time, suggesting a general enhancement in lake primary production across the boreal zone. Collectively, this body of work demonstrates that long-term sediment records offer a critical perspective on ecosystem change not accessible through routine monitoring programs. We advocate using modern datasets in tandem with paleolimnology to establish baseline conditions, measure ecosystem changes, and set meaningful management targets.
The introduction of invasive macrophyte species can affect submerged macrophyte community composition and abundance, which in turn can alter the functions of lake ecosystems. Knowing when and how invasive macrophytes arrive and spread can help disentangle the effects of invasive species from other stressors on lake ecosystems. This requires a long‐term (decades) perspective of macrophyte community composition, which is rarely available. An alternative is paleolimnological inferences of macrophyte community composition from fossil diatom assemblages, which requires knowledge of epiphytic diatom communities. Here, we investigated the epiphytic diatom community composition of three common submerged macrophyte species (Chara sp., Potamogeton robbinsii, and the invasive Myriophyllum spicatum) in a typical temperate, mixed forest lake, Chandos Lake, Ontario, Canada, to provide a basis for future paleolimnological research. Non‐parametric, multivariate analysis of variance indicated a statistically significant difference in the epiphytic diatom communities of different macrophyte species, despite principal components analysis showing some overlap among the diatom communities. Diatom community composition of all macrophytes had abundant Achnanthidium minutissimum and Cocconeis placentula. Generalized linear models and univariate analysis of variance identified six diatoms (Encyonopsis microcephala, Epithemia turgida, Gomphonema parvulius, Navicula gerloffi, Rhopalodia gibba, and Rossithidium anastasiae) that were significantly different among macrophyte species. Although it remains uncertain whether these differences are sufficient to infer historical macrophyte community composition from epiphytic diatom fossil assemblages, our results indicate the potential of such an approach and offer suggestions for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.