4Durrell Wildlife Conservation Trust-Madagascar, Antananarivo, Madagascar Although the number of described lemur species has increased considerably over the last 20 years, detailed biogeographic data are still lacking from many geographic regions, in particular in the eastern part of Madagascar. This study investigated mouse lemur species diversity in a previously unstudied Inter-River-System in the eastern Makira region. Three sites were visited and 26 individuals were sampled and characterized with 13 external morphometric measurements. Standard phylogenetic analyses were performed on the basis of sequences of three mitochondrial loci by including representatives of all other published mouse lemur species for comparison. The analyses revealed the presence of three mouse lemur species in one study site, two of which were previously undescribed. The two new species are genetically distinct and belong to the larger-bodied mouse lemur species on the island, whereas the third species, Microcebus mittermeieri, belongs to the smaller-bodied mouse lemur species. The study fully describes one of the new species. This study and other lemur inventories suggest that the Makira region is particularly rich in lemur species and the lack of any protected zone in this area should now attract the urgent attention of conservation stakeholders. Am.
Mouse lemurs (Microcebus) are a radiation of morphologically cryptic primates distributed throughout Madagascar for which the number of recognized species has exploded in the past two decades. This taxonomic explosion has prompted understandable concern that there has been substantial oversplitting in the mouse lemur clade. Here, we take an integrative approach to investigate species diversity in two pairs of sister lineages that occur in a region in northeastern Madagascar with high levels of microendemism and predicted habitat loss. We analyzed RADseq data with multispecies coalescent (MSC) species delimitation methods for three named species and an undescribed lineage previously identified to have divergent mtDNA. Marked differences in effective population sizes, levels of gene flow, patterns of isolation-by-distance, and species delimitation results were found among them. Whereas all tests support the recognition of the presently undescribed lineage as a separate species, the species-level distinction of two previously described species, M. mittermeieri and M. lehilahytsara is not supported – a result that is particularly striking when using the genealogical discordance index (gdi). Non-sister lineages occur sympatrically in two of the localities sampled for this study, despite an estimated divergence time of less than 1 Ma. This suggests rapid evolution of reproductive isolation in the focal lineages, and in the mouse lemur clade generally. The divergence time estimates reported here are based on the MSC and calibrated with pedigree-based mutation rates and are considerably more recent than previously published fossil-calibrated concatenated likelihood estimates, however. We discuss the possible explanations for this discrepancy, noting that there are theoretical justifications for preferring the MSC estimates in this case.
Delimitation of cryptic species is increasingly based on genetic analyses but the integration of distributional, morphological, behavioral, and ecological data offers unique complementary insights into species diversification. We surveyed communities of nocturnal mouse lemurs (Microcebus spp.) in five different sites of northeastern Madagascar, measuring a variety of morphological parameters and assessing reproductive states for 123 individuals belonging to five different lineages. We documented two different non‐sister lineages occurring in sympatry in two areas. In both cases, sympatric species pairs consisted of a locally restricted (M. macarthurii or M. sp. #3) and a more widespread lineage (M. mittermeieri or M. lehilahytsara). Estimated Extents of Occurrence (EOO) of these lineages differed remarkably with 560 and 1,500 km2 versus 9,250 and 50,700 km2, respectively. Morphometric analyses distinguished unambiguously between sympatric species and detected more subtle but significant differences among sister lineages. Tail length and body size were most informative in this regard. Reproductive schedules were highly variable among lineages, most likely impacted by phylogenetic relatedness and environmental variables. While sympatric species pairs differed in their reproductive timing (M. sp. #3/M. lehilahytsara and M. macarthurii/M. mittermeieri), warmer lowland rainforests were associated with a less seasonal reproductive schedule for M. mittermeieri and M. lehilahytsara compared with populations occurring in montane forests. Distributional, morphological, and ecological data gathered in this study support the results of genomic species delimitation analyses conducted in a companion study, which identified one lineage, M. sp. #3, as meriting formal description as a new species. Consequently, a formal species description is included. Worryingly, our data also show that geographically restricted populations of M. sp. #3 and its sister species (M. macarthurii) are at high risk of local and perhaps permanent extinction from both deforestation and habitat fragmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.