The concept of semantic tagging and its potential for semantic enhancements to taxonomic papers is outlined and illustrated by four exemplar papers published in the present issue of ZooKeys. The four papers were created in different ways: (i) written in Microsoft Word and submitted as non-tagged manuscript (doi: 10.3897/zookeys.50.504); (ii) generated from Scratchpads and submitted as XML-tagged manuscripts (doi: 10.3897/zookeys.50.505 and doi: 10.3897/zookeys.50.506); (iii) generated from an author’s database (doi: 10.3897/zookeys.50.485) and submitted as XML-tagged manuscript. XML tagging and semantic enhancements were implemented during the editorial process of ZooKeys using the Pensoft Mark Up Tool (PMT), specially designed for this purpose. The XML schema used was TaxPub, an extension to the Document Type Definitions (DTD) of the US National Library of Medicine Journal Archiving and Interchange Tag Suite (NLM). The following innovative methods of tagging, layout, publishing and disseminating the content were tested and implemented within the ZooKeys editorial workflow: (1) highly automated, fine-grained XML tagging based on TaxPub; (2) final XML output of the paper validated against the NLM DTD for archiving in PubMedCentral; (3) bibliographic metadata embedded in the PDF through XMP (Extensible Metadata Platform); (4) PDF uploaded after publication to the Biodiversity Heritage Library (BHL); (5) taxon treatments supplied through XML to Plazi; (6) semantically enhanced HTML version of the paper encompassing numerous internal and external links and linkouts, such as: (i) vizualisation of main tag elements within the text (e.g., taxon names, taxon treatments, localities, etc.); (ii) internal cross-linking between paper sections, citations, references, tables, and figures; (iii) mapping of localities listed in the whole paper or within separate taxon treatments; (v) taxon names autotagged, dynamically mapped and linked through the Pensoft Taxon Profile (PTP) to large international database services and indexers such as Global Biodiversity Information Facility (GBIF), National Center for Biotechnology Information (NCBI), Barcode of Life (BOLD), Encyclopedia of Life (EOL), ZooBank, Wikipedia, Wikispecies, Wikimedia, and others; (vi) GenBank accession numbers autotagged and linked to NCBI; (vii) external links of taxon names to references in PubMed, Google Scholar, Biodiversity Heritage Library and other sources. With the launching of the working example, ZooKeys becomes the first taxonomic journal to provide a complete XML-based editorial, publication and dissemination workflow implemented as a routine and cost-efficient practice. It is anticipated that XML-based workflow will also soon be implemented in botany through PhytoKeys, a forthcoming partner journal of ZooKeys. The semantic markup and enhancements are expected to greatly extend and accelerate the way taxonomic information is published, disseminated and used.
The morphology and infraciliature of two stichotrichid ciliates, Gastrostyla pulchra(Perejaslawzewa 1886) Kahl, 1932 and Hemigastrostyla enigmatica(Dragesco and Dragesco-Kernéis 1986) Song & Wilbert, 1997, collected from marine and brackish sediments, were investigated by using living observations and protargol impregnations. Both 18S and 28S rRNA genes of these two species were sequenced. The 18S rDNA show high similarities (98.4%-99.7%) among populations of each species. There is about 94% similarity in 18S rDNA genes between G. pulchra and Gastrostyla steinii, the type species of the genus, which has been confirmed to be an oxytrichid by previous studies. In the phylogenetic trees of 18S, 28S, and combined 18S and 28S rDNA, both G. pulchra and H. enigmatica are consistently placed outside the well-established oxytrichid clade. Based on our analyses and previous ontogenetic data, we conclude that these two species may represent some lower groups in the subclass Stichotrichia, and that G. pulchra should represent a new genus, Protogastrostyla n. g. This new genus, which is morphologically similar to Gastrostyla, differs in its morphogenesis: the apical part of the old AZM is retained combining with the newly built membranelles that develop from the proter's oral primordium; the primary primordia of the dorsal kinety; and marginal primordia commence de novo without a definite contribution from the old structure.
ABSTRACT1. The freshwater pearl mussel Margaritifera margaritifera L. is globally endangered and is threatened by commercial exploitation, pollution and habitat loss throughout its range. Captive breeding would be a valuable tool in enhancing the status of M. margaritifera in the UK.2. We have developed a semi-natural system for successfully infecting juvenile brown trout with glochidial M. margaritifera, and culturing juvenile mussels in experimental tanks where glochidial M. margaritifera can excyst from fish gills and settle into sediment.3. Infected fish had less than 1% mortality. Levels of infection varied among fish. Two yearly cohorts of juvenile M. margaritifera were identified from samples of sediment taken from each experimental tank. Individuals range in size from 1.4 mm (2000 cohort) to >3 mm in length (1999 cohort).4. The number of juvenile M. margaritifera present in the two experimental tanks are estimated to be between 3600 (tank A) and 0 (tank B) for the putative 1999 cohort and between 6000 (tank A) and 13 000 (tank B) for the putative 2000 cohort.5. This pioneering method for large-scale cultivation of juvenile M. margaritifera is intermediate between the release of infected fish into rivers and the intensive cultivation systems developed in continental Europe and the USA for other species of unionid. This is the first time that large numbers of M. margaritifera have been cultured and represents a significant breakthrough in the conservation of this globally endangered Red Data List species. The method is straightforward and is most cost-effective when undertaken alongside established hatchery processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.