This paper introduces a user-oriented software tool for simulation of a solar energy-based hydrogen production system. The developed tool goes beyond the realm of electric load and includes a hydrogen cooking load facility, as an efficient means of utilising the hydrogen produced. A model rural household in Nigeria has been used to evaluate the tool. It was found that a 2.42 kW solar photovoltaic module, 0.6 kW electrolyser and 3.7 kWh battery would be enough to provide steady 24-hour power for a typically modest daily energy demand of 2.2 kWh. A prospect of harnessing an excess energy on clear weather conditions and utilising it to produce hydrogen is discussed. In the results, the excess energy realised was used in a H2-cooker to partly meet the estimated 1.9 kWh/day cooking demand of the household over a simulated year period.
In 2011, the Departments of Architecture, Physics and Engineering began the development of a small Passivhaus standard, renewable energy self-sufficient studio at the University Botanical Gardens in Dundee. The prototype was conceived as an experimental, integrated technical platform to monitor the performance of an ultra-low-energy consumption, energy positive building in the Scottish climate, and understand user behaviour in relation to managing energy in-use and reducing occupant's energy consumption. The building fabric has been constructed using regional sustainable materials, including a low-thermal bridging timber kit relying on Scottish small cross-section timber and a novel foam concrete (air entrained) slab foundation. While further work is required to complete the installation of the renewable energy system, predictive modelling indicates that energy autonomy can be largely achieved. With the recent introduction of the new Passivhaus 2009 criteria in October 2015, this project provides an insight into the practical application of an autarkic energy system in a northern European climate. The following paper describes the research rationale, the processes and decision making in the development of the formal and technical design of the building and discusses our current thinking in the design and quantification of the energy system.
A simulation methodology for calculating the lattice parameter and oxygen ion migration energy of ceria-based electrolyte formulations is devised. The results are analysed and benchmarked against experimentally obtained values to verify the efficacy of the simulation methodology. A total of 26, 2 x 2 x 2 samarium (Sm)and gadolinium (Gd)-doped supercells of different compositions and doping profiles were modelled and simulated by molecular mechanics force field methods using CP2K. The results of the computational simulations are comparable with those obtained experimentally, especially when there are equal amounts of Sm and Gd dopants in the structure. Simulation results can also provide insights into the mechanisms of ionic conduction. The incongruence of the computational and experimental results is attributed to the limitations of the molecular mechanics force field methodology utilised, with the expectation that an ab initio density functional theory (DFT) calculation would yield closer conformance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.