Breast cancer stem cells (BCSC) play critical roles in the acquisition of resistance to endocrine therapy in estrogen receptor (ER)-positive (ER + ve) breast cancer (BC). The resistance results from complex alterations involving ER, growth factor receptors, NOTCH, Wnt/β-catenin, hedgehog, YAP/TAZ, and the tumor microenvironment. These mechanisms are likely converged on regulating BCSCs, which then drive the development of endocrine therapy resistance. In this regard, hormone therapies enrich BCSCs in ER + ve BCs under both pre-clinical and clinical settings along with upregulation of the core components of “stemness” transcriptional factors including SOX2, NANOG, and OCT4. SOX2 initiates a set of reactions involving SOX9, Wnt, FXY3D, and Src tyrosine kinase; these reactions stimulate BCSCs and contribute to endocrine resistance. The central contributions of BCSCs to endocrine resistance regulated by complex mechanisms offer a unified strategy to counter the resistance. ER + ve BCs constitute approximately 75% of BCs to which hormone therapy is the major therapeutic approach. Likewise, resistance to endocrine therapy remains the major challenge in the management of patients with ER + ve BC. In this review we will discuss evidence supporting a central role of BCSCs in developing endocrine resistance and outline the strategy of targeting BCSCs to reduce hormone therapy resistance.
We report here that CYB5D2 is associated with tumor suppression function in breast cancer (BC). CYB5D2 expression was significantly reduced in tamoxifen resistant MCF7 cells and in MCF7 cell-derived xenografts treated with TAM. CYB5D2 overexpression induced apoptosis in MCF7 cells; CYB5D2 knockdown enhanced MCF7 cell proliferation. Using the TCGA and Curtis datasets within the Oncomine database, CYB5D2 mRNA expression was downregulated in primary BCs vs breast tissues and HER2-positive or triple negative BCs vs estrogen receptor (ER)-positive BCs. Using the TCGA and Metabric datasets (n = 817 and n = 2509) within cBioPortal, 660 and 4891 differentially expressed genes (DEGs) in relation to CYB5D2 were identified. These DEGs were enriched in pathways governing cell cycle progression, progesterone-derived oocyte maturation, oocyte-meiosis, estrogen-mediated S-phase entry, and DNA metabolism. CYB5D2 downregulation decreased overall survival (OS, p = 0.0408). A CYB5D2-derived 21-gene signature was constructed and robustly correlated with OS shortening (p = 5.72e-12), and independently predicted BC deaths (HR = 1.28; 95% CI 1.08–1.52; p = 0.004) once adjusting for known clinical factors. CYB5D2 reductions displayed relationship with mutations in PIK3CA, GATA3, MAP3K1, CDH1, TP53 and RB1. Impressively, 85% (560/659) of TP53 mutations occurred in the 21-gene signature-positive BC. Collectively, we provide the first evidence that CYB5D2 is a candidate tumor suppressor of BC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.