Breast cancer stem cells (BCSC) play critical roles in the acquisition of resistance to endocrine therapy in estrogen receptor (ER)-positive (ER + ve) breast cancer (BC). The resistance results from complex alterations involving ER, growth factor receptors, NOTCH, Wnt/β-catenin, hedgehog, YAP/TAZ, and the tumor microenvironment. These mechanisms are likely converged on regulating BCSCs, which then drive the development of endocrine therapy resistance. In this regard, hormone therapies enrich BCSCs in ER + ve BCs under both pre-clinical and clinical settings along with upregulation of the core components of “stemness” transcriptional factors including SOX2, NANOG, and OCT4. SOX2 initiates a set of reactions involving SOX9, Wnt, FXY3D, and Src tyrosine kinase; these reactions stimulate BCSCs and contribute to endocrine resistance. The central contributions of BCSCs to endocrine resistance regulated by complex mechanisms offer a unified strategy to counter the resistance. ER + ve BCs constitute approximately 75% of BCs to which hormone therapy is the major therapeutic approach. Likewise, resistance to endocrine therapy remains the major challenge in the management of patients with ER + ve BC. In this review we will discuss evidence supporting a central role of BCSCs in developing endocrine resistance and outline the strategy of targeting BCSCs to reduce hormone therapy resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.