We examined whether it is possible to identify the emotional content of behaviour from point-light displays where pairs of actors are engaged in interpersonal communication. These actors displayed a series of emotions, which included sadness, anger, joy, disgust, fear, and romantic love. In experiment 1, subjects viewed brief clips of these point-light displays presented the right way up and upside down. In experiment 2, the importance of the interaction between the two figures in the recognition of emotion was examined. Subjects were shown upright versions of (i) the original pairs (dyads), (ii) a single actor (monad), and (iii) a dyad comprising a single actor and his/her mirror image (reflected dyad). In each experiment, the subjects rated the emotional content of the displays by moving a slider along a horizontal scale. All of the emotions received a rating for every clip. In experiment 1, when the displays were upright, the correct emotions were identified in each case except disgust; but, when the displays were inverted, performance was significantly diminished for some emotions. In experiment 2, the recognition of love and joy was impaired by the absence of the acting partner, and the recognition of sadness, joy, and fear was impaired in the non-veridical (mirror image) displays. These findings both support and extend previous research by showing that biological motion is sufficient for the perception of emotion, although inversion affects performance. Moreover, emotion perception from biological motion can be affected by the veridical or non-veridical social context within the displays.
Performance of a wide range of simple visual tasks improves with practice. Here we ask whether such learning occurs for the fundamental visual task of luminance contrast detection. In two experiments we find that contrast sensitivity increases following extensive practice at detecting briefly presented sinusoidal luminance gratings and that learning is maintained after six months. Learning is spatial frequency tuned, specific to retinal location and can be specific to one eye, but is not selective for orientation. The selectivity of learning implies that it is based on plasticity in early visual, as opposed to central cognitive, processing mechanisms.
The first stimulus in a sequential train of identical flashes of light appears to last longer than those in the middle of the train. Four flashes (each 600 or 667 ms) were presented and the first was shortened until it appeared to have the same duration as that of the next. The duration of the first stimulus was found to be overestimated by about 50%. The illusion was unaffected by stimulus contrast, size, or interflash interval (between 100 and 600 ms). For some subjects, the last stimulus in the train also appeared to be about 50% longer than the penultimate flash. The results are discussed in terms of theories of how attention, arousal, and stimulus processing can affect duration perception. The mechanisms activated are peculiar to the visual system, since no similar illusion of duration was consistently experienced with a train of auditory tones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.