Colorectal cancer is one of the most common cancers in the western world. Its early detection has been found to improve the prognosis of the patient, providing a wide window of opportunity for successful therapeutic interventions. However, current diagnostic techniques all have some limitations; there is a need to develop a better technique for routine screening purposes. We present a new methodology based on magnetic resonance spectroscopy of fecal extracts for the non-invasive detection of colorectal cancer. Five hundred twenty-three human subjects (412 with no colonic neoplasia and 111 with colorectal cancer, who were scheduled for colonoscopy or surgery) were recruited to donate a single sample of stool. One-dimensional (1)H magnetic resonance spectroscopy (MRS) experiments were performed on the supernatant of aqueous dispersions of the stool samples. Using a statistical classification strategy, several multivariate classifiers were developed. Applying the preprocessing, feature selection and classifier development stages of the Statistical Classification Strategy led to approximately 87% average balanced sensitivity and specificity for both training and monitoring sets, improving to approximately 92% when only crisp results, i.e. class assignment probabilities> or =75%, are considered. These results indicate that (1)H magnetic resonance spectroscopy of human fecal extracts, combined with appropriate data analysis methodology, has the potential to detect colorectal neoplasia accurately and reliably, and could be a useful addition to the current screening tools.
Objectives:The variation of luminal pH and transit time in an individual is unknown, yet is necessary to interpret single measurements. This study aimed to assess the intrasubject variability of gut pH and transit time in healthy volunteers using SmartPill devices (Covidien, Minneapolis, MN).Methods:Each subject (n=10) ingested two SmartPill devices separated by 24 h. Mean pH values were calculated for 30 min after gastric emptying (AGE), before the ileocecal (BIC) valve, after the ileocecal (AIC) valve, and before body exit (BBE). Intrasubject variability was determined by comparing mean values from both ingestions for an individual subject using standard deviations, 95% limits of agreement, and Bland-Altman plots.Results:Tandem device ingestion occurred without complication. The median (full range) intrasubject standard deviations for pH were 0.02 (0.0002–0.2048) for AGE, 0.06 (0.0002–0.3445) for BIC, 0.14 (0.0018–0.3042) for AIC, and 0.08 (0.0098–0.5202) for BBE. There was a significant change in pH for AIC (mean difference: −0.45±0.31, P=0.0015) observed across all subjects. The mean coefficients of variation for transit time were 12.0±7.4% and 25.8±15.8% for small and large bowels, respectively (P=0.01).Conclusions:This study demonstrates the safety and feasibility of tandem gut transit and pH assessments using the SmartPill device. In healthy individuals and over 24 h, the gut pH profile does not markedly fluctuate in a given region with more variation seen in the colon compared with the small bowel, which has important implications for future physiology and drug delivery studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.