We construct a new seismic model for central and West Antarctica by jointly inverting Rayleigh wave phase and group velocities along with P wave receiver functions. Ambient noise tomography exploiting data from more than 200 seismic stations deployed over the past 18 years is used to construct Rayleigh wave phase and group velocity dispersion maps. Comparison between the ambient noise phase velocity maps with those constructed using teleseismic earthquakes confirms the accuracy of both results. These maps, together with P receiver function waveforms, are used to construct a new 3‐D shear velocity (Vs) model for the crust and uppermost mantle using a Bayesian Monte Carlo algorithm. The new 3‐D seismic model shows the dichotomy of the tectonically active West Antarctica (WANT) and the stable and ancient East Antarctica (EANT). In WANT, the model exhibits a slow uppermost mantle along the Transantarctic Mountains (TAMs) front, interpreted as the thermal effect from Cenozoic rifting. Beneath the southern TAMs, the slow uppermost mantle extends horizontally beneath the traditionally recognized EANT, hypothesized to be associated with lithospheric delamination. Thin crust and lithosphere observed along the Amundsen Sea coast and extending into the interior suggest involvement of these areas in Cenozoic rifting. EANT, with its relatively thick and cold crust and lithosphere marked by high Vs, displays a slower Vs anomaly beneath the Gamburtsev Subglacial Mountains in the uppermost mantle, which we hypothesize may be the signature of a compositionally anomalous body, perhaps remnant from a continental collision.
The seismic velocity structure of Antarctica is important, both as a constraint on the tectonic history of the continent and for understanding solid Earth interactions with the ice sheet. We use Rayleigh wave array analysis methods applied to teleseismic data from recent temporary broadband seismograph deployments to image the upper mantle structure of central and West Antarctica. Phase velocity maps are determined using a two–plane wave tomography method and are inverted for shear velocity using a Monte Carlo approach to estimate three‐dimensional velocity structure. Results illuminate the structural dichotomy between the East Antarctic Craton and West Antarctica, with West Antarctica showing thinner crust and slower upper mantle velocity. West Antarctica is characterized by a 70–100 km thick lithosphere, underlain by a low‐velocity zone to depths of at least 200 km. The slowest anomalies are beneath Ross Island and the Marie Byrd Land dome and are interpreted as upper mantle thermal anomalies possibly due to mantle plumes. The central Transantarctic Mountains are marked by an uppermost mantle slow‐velocity anomaly, suggesting that the topography is thermally supported. The presence of thin, higher‐velocity lithosphere to depths of about 70 km beneath the West Antarctic Rift System limits estimates of the regionally averaged heat flow to less than 90 mW/m2. The Ellsworth‐Whitmore block is underlain by mantle with velocities that are intermediate between those of the West Antarctic Rift System and the East Antarctic Craton. We interpret this province as Precambrian continental lithosphere that has been altered by Phanerozoic tectonic and magmatic activity.
[1] The Gamburtsev Subglacial Mountains (GSM), located near the center of East Antarctica, remain one of the most enigmatic mountain ranges on Earth. A lack of direct geologic samples renders their tectonic history almost totally unconstrained. We utilize teleseismic Rayleigh wave data from a 2 year deployment of broadband seismic stations across the region to image shear velocity structure and analyze the lithospheric age of the GSM and surrounding regions. We solve for 2-D phase velocities and invert these results for 3-D shear velocity structure. We perform a Monte Carlo simulation to improve constraints of crustal thickness and shear velocity structure. Beneath the core of the GSM, we find crustal thickness in excess of 55 km. Mantle shear velocities remain faster than global average models to a depth of approximately 250 km, indicating a thick lithospheric root. Thinner crust and slower upper mantle velocities are observed beneath the Lambert Rift System and the Polar Subglacial Basin. When compared with phase velocity curves corresponding to specific tectonothermal ages elsewhere in the world, average phase velocity results for the GSM are consistent with regions of Archean-Paleoproterozoic origin. Combined with radiometric ages of detrital zircons found offshore, these results indicate a region of old crust that has undergone repeated periods of uplift and erosion, most recently during the Mesozoic breakup of Gondwana. Lower crustal seismic velocities imply a moderately dense lower crust beneath the core of the GSM, but with lower density than suggested by recent gravity models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.