Dopamine (DA) is important to a wide range of striatal functions, including associative learning and habit formation. At synapses between cortical pyramidal neurons and principal striatal medium spiny neurons (MSNs), postsynaptic D1 and D2 DA receptors are postulated to be necessary for the induction of long-term potentiation and depression, respectively. Because these receptors are restricted to two distinct MSN populations, this postulate demands that synaptic plasticity be unidirectional in each cell type. Using brain slices from DA receptor transgenic mice, we show that this is not the case. Rather, DA plays complementary roles in these two types of MSN to ensure that synaptic plasticity is bidirectional and Hebbian. In models of Parkinson's disease, this system is thrown out of balance, leading to unidirectional changes in plasticity that could underlie network pathology and symptoms.
The outer and inner hair cells of the mammalian cochlea perform different functions. In response to changes in membrane potential, the cylindrical outer hair cell rapidly alters its length and stiffness. These mechanical changes, driven by putative molecular motors, are assumed to produce amplification of vibrations in the cochlea that are transduced by inner hair cells. Here we have identified an abundant complementary DNA from a gene, designated Prestin, which is specifically expressed in outer hair cells. Regions of the encoded protein show moderate sequence similarity to pendrin and related sulphate/anion transport proteins. Voltage-induced shape changes can be elicited in cultured human kidney cells that express prestin. The mechanical response of outer hair cells to voltage change is accompanied by a 'gating current', which is manifested as nonlinear capacitance. We also demonstrate this nonlinear capacitance in transfected kidney cells. We conclude that prestin is the motor protein of the cochlear outer hair cell.
This paper presents a new model of the shear velocity structure of the crust and uppermost mantle beneath the contiguous U.S. The model is based on more than a decade of USArray Transportable Array (TA) data across the U.S. and derives from a joint Bayesian Monte Carlo inversion of Rayleigh wave group and phase speeds determined from ambient noise and earthquakes, receiver functions, and Rayleigh wave ellipticity (H/V) measurements. Within the Bayesian inverse theoretic framework, a prior distribution of models is posited and a posterior distribution is inferred beneath all of the more than 1800 TA stations across the U.S. The resulting mean and standard deviation of the mean of the posterior distribution at each station summarize the inversion results, which are then interpolated onto a regular 0.25°×0.25° grid across the U.S. to define the final 3‐D model. We present arguments that show that the standard deviation of the posterior distribution overestimates the effect of nonsystematic errors in the final model by a factor of 4–5 and identify uncertainties in density and mantle Q as primary potential sources of remaining systematic error in the final model. The model presents a great many newly resolved structural features across the U.S. that require further analysis and dedicated explication. We highlight here low‐velocity anomalies in the upper mantle that underlie the Appalachians with centers of anomalies in northern Georgia, western Virginia, and, most prominently, New England.
.[1] Based on 1-2 years of continuous observations of seismic ambient noise data obtained at more than 600 stations in and around Tibet, Rayleigh wave phase velocity maps are constructed from 10 s to 60 s period. A 3-D Vsv model of the crust and uppermost mantle is derived from these maps. The 3-D model exhibits significant apparently inter-connected low shear velocity features across most of the Tibetan middle crust at depths between 20 and 40 km. These low velocity zones (LVZs) do not conform to surface faults and, significantly, are most prominent near the periphery of Tibet. The observations support the internal deformation model in which strain is dispersed in the deeper crust into broad ductile shear zones, rather than being localized horizontally near the edges of rigid blocks. The prominent LVZs are coincident with strong mid-crustal radial anisotropy in western and central Tibet and probably result at least partially from anisotropic minerals aligned by deformation, which mitigates the need to invoke partial melt to explain the observations. Irrespective of their cause in partial melt or mineral alignment, mid-crustal LVZs reflect deformation and their amplification near the periphery of Tibet provides new information about the mode of deformation across Tibet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.