General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ?
Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
This research is motivated by the operations of a public transit company in Hong Kong. We investigate how real-time information can be utilized in combination with historical data to improve routing and scheduling decisions practically. A dynamic integrated vehicle and crew scheduling problem is studied where travel times are stochastic and time-dependent. The objective is to maximize the route frequencies and mileage to provide good passenger service and simultaneously minimize crew overtime and meal-break delays. To mitigate unexpected delays due to uncertainties in operations, various mathematical models are proposed for revising the schedules in real time under a rolling-horizon framework. Their efficiency and effectiveness are evaluated via simulation using real-world data. The simulation results also identify the potential benefits of revising the schedule dynamically in real time using optimization models. The results show that the proposed approaches can significantly reduce motormen overtime and meal-break delays while maintaining coverage and route frequency requirements.
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ?
Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Academic research on (s,S) inventory policies for multi-echelon distribution networks with deterministic lead times, backordering, and fill rate constraints is limited. Inspired by a real-life Dutch food retail case we develop a simulation-optimization approach to optimize (s,S) inventory policies in such a setting. We compare the performance of a Nested Bisection Search (NBS) and a novel Scatter Search (SS) metaheuristic using 1280 instances from literature and we derive managerial implications from a real-life case. Results show that the SS outperforms the NBS on solution quality. Additionally, supply chain costs can be saved by allowing lower fill rates at upstream echelons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.