Our understanding of drug tissue distribution impacts a number of areas in drug development, including: pharmacology, pharmacokinetics, safety, drug-drug interactions, transport and metabolism. Despite their extensive use, autoradiography and tissue homogenate LC-MS analysis have limitations in providing a comprehensive assessment of tissue distributions. In the case of autoradiography, it is the inability to distinguish between parent drug and drug metabolites. In LC-MS analysis of tissue homogenate, all tissue localization information is lost. The emerging technique of MALDI imaging mass spectrometry has the capability to distinguish between parent and metabolites while maintaining spatial distribution in tissues. In this article, we will review the MALDI imaging MS methodology as applied to drug development and provide examples highlighting the impact of this important technique in drug development.
Deuterium exchange of bovine cytochrome c has been monitored by electrospray ionization mass spectrometry. Different charge-state distributions in the mass spectrum appear to represent different protein conformations, but rapid interconversion of the conformations can lead to a coincidence of the deuterium exchange rates. When interconversion is blocked, the conformation corresponding to higher m/z (lower charge) exchanges more slowly, indicating a tightly folded state. Furthermore, the data suggest that at least two conformations can have identical charge-state distributions, but have different exchange rates. Thus, neither charge-state distribution nor deuterium exchange rate alone is a sufficient indicator of protein conformation.
The pharmacokinetics, metabolism, and excretion of dolutegravir, an unboosted, once-daily human immunodeficiency virus type 1 integrase inhibitor, were studied in healthy male subjects following single oral administration of [ 14 C]dolutegravir at a dose of 20 mg (80 Ci). Dolutegravir was well tolerated, and absorption of dolutegravir from the suspension formulation was rapid (median time to peak concentration, 0.5 h), declining in a biphasic fashion. Dolutegravir and the radioactivity had similar terminal plasma half-lives (t 1/2 ) (15.6 versus 15.7 h), indicating metabolism was formation rate limited with no long-lived metabolites. Only minimal association with blood cellular components was noted with systemic radioactivity. Recovery was essentially complete (mean, 95.6%), with 64.0% and 31.6% of the dose recovered in feces and urine, respectively. Unchanged dolutegravir was the predominant circulating radioactive component in plasma and was consistent with minimal presystemic clearance. Dolutegravir was extensively metabolized. An inactive ether glucuronide, formed primarily via UGT1A1, was the principal biotransformation product at 18.9% of the dose excreted in urine and the principal metabolite in plasma. Two minor biotransformation pathways were oxidation by CYP3A4 (7.9% of the dose) and an oxidative defluorination and glutathione substitution (1.8% of the dose). No disproportionate human metabolites were observed.
Two model peptides, melittin and a growth hormone releasing factor (GRF) analog, have been studied by mass spectrometry and tandem mass spectrometry during the course of their deuterium exchange. Both peptides are known from previous work to form α-helices in solution. When the peptides are exposed to deuterated solvents, their masses increase as deuterium atoms replace protons in the exchangeable sites of the peptides. The mass spectrometry results clearly indicate multiple populations of exchangeable protons: Some exchange very fast, and are presumably on the surface and not involved in hydrogen bonding; others exchange much more slowly, indicating that they are probably participating in hydrogen bonding.Tandem mass spectrometric experiments were conducted, and the masses of the product (fragment) ions were used to determine where in the peptide the deuterium atoms were incorporated. The results agree very well with NMR studies of the same peptides. Melittin appears as two helical segments with a kink around Pro-14. The GRF analog contains a single long helix, spanning almost the entire length of the peptide. The dynamics of the unfolding of the helices can also be explored by observing how the exchange progresses with time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.