We present discovery imaging and spectroscopy for nine new z ∼ 6 quasars found in the Canada-France Highz Quasar Survey (CFHQS) bringing the total number of CFHQS quasars to 19. By combining the CFHQS with the more luminous SDSS sample we are able to derive the quasar luminosity function from a sample of 40 quasars at redshifts 5.74 < z < 6.42. Our binned luminosity function shows a slightly lower normalisation and flatter slope than found in previous work. The binned data also suggest a break in the luminosity function at M 1450 ≈ −25. A double power law maximum likelihood fit to the data is consistent with the binned results. The luminosity function is strongly constrained (1 σ uncertainty < 0.1 dex) over the range −27.5 < M 1450 < −24.7. The best-fit parameters are Φ(M * 1450 ) = 1.14 × 10 −8 Mpc −3 mag −1 , break magnitude M * 1450 = −25.13 and bright end slope β = −2.81. However the covariance between β and M * 1450 prevents strong constraints being placed on either parameter. For a break magnitude in the range −26 < M * 1450 < −24 we find −3.8 < β < −2.3 at 95% confidence. We calculate the z = 6 quasar intergalactic ionizing flux and show it is between 20 and 100 times lower than that necessary for reionization. Finally, we use the luminosity function to predict how many higher redshift quasars may be discovered in future near-IR imaging surveys.
We present discovery observations of a quasar in the Canada-France High-z Quasar Survey (CFHQS) at redshift z = 6.44. We also use near-IR spectroscopy of nine CFHQS quasars at z ∼ 6 to determine black hole masses. These are compared with similar estimates for more luminous Sloan Digital Sky Survey (SDSS) quasars to investigate the relationship between black hole mass and quasar luminosity. We find a strong correlation between Mg ii FWHM and UV luminosity and that most quasars at this early epoch are accreting close to the Eddington limit. Thus these quasars appear to be in an early stage of their life cycle where they are building up their black hole mass exponentially. Combining these results with the quasar luminosity function, we derive the black hole mass function at z = 6. Our black hole mass function is ∼ 10 4 times lower than at z = 0 and substantially below estimates from previous studies. The main uncertainties which could increase the black hole mass function are a larger population of obscured quasars at high-redshift than is observed at low-redshift and/or a low quasar duty cycle at z = 6. In comparison, the global stellar mass function is only ∼ 10 2 times lower at z = 6 than at z = 0. The difference between the black hole and stellar mass function evolution is due to either rapid early star formation which is not limited by radiation pressure as is the case for black hole growth or inefficient black hole seeding. Our work predicts that the black hole mass -stellar mass relation for a volume-limited sample of galaxies declines rapidly at very high redshift. This is in contrast to the observed increase at 4 < z < 6 from the local relation if one just studies the most massive black holes.
The Next Generation Virgo Cluster Survey (NGVS) is a program that uses the 1 deg 2 MegaCam instrument on the Canada-France-Hawaii Telescope to carry out a comprehensive optical imaging survey of the Virgo cluster, from its core to its virial radius-covering a total area of 104 deg 2-in the u * griz bandpasses. Thanks to a dedicated data acquisition strategy and processing pipeline, the NGVS reaches a point-source depth of g ≈ 25.9 mag (10σ) and a surface brightness limit of μ g ∼ 29 mag arcsec −2 (2σ above the mean sky level), thus superseding all previous optical studies of this benchmark galaxy cluster. In this paper, we give an overview of the technical aspects of the survey, such as areal coverage, field placement, choice of filters, limiting magnitudes, observing strategies, data processing and calibration pipelines, survey timeline, and data products. We also describe the primary scientific topics of the NGVS, which include: the galaxy luminosity and mass functions; the color-magnitude relation; galaxy scaling relations; compact stellar systems; galactic nuclei; the extragalactic distance scale; the large-scale environment of the cluster and its relationship to the Local Supercluster; diffuse light and the intracluster medium; galaxy interactions and evolutionary processes; and extragalactic star clusters. In addition, we describe a number of ancillary programs dealing with "foreground" and "background" science topics, including the study of highinclination trans-Neptunian objects; the structure of the Galactic halo in the direction of the Virgo Overdensity and Sagittarius Stream; the measurement of cosmic shear, galaxy-galaxy, and cluster lensing; and the identification of distant galaxy clusters, and strong-lensing events.
We analyse Hubble Space Telescope images of a complete sample of 341 galaxies drawn from both the Canada France and Autofib/Low Dispersion Survey Spectrograph ground-based redshift surveys. In this, the first paper in the series, each galaxy has been morphologically classified according to a scheme similar to that developed for the Medium Deep Survey. We discuss the reproducibility of these classifications and quantify possible biases that may arise from various redshift-dependent effects. We then discuss automated classifications of the sample and conclude, from several tests, that we can expect an apparent migration with redshift to later Hubble types that corresponds to a misclassification in our adopted machine classification system of ∼ 24% ± 11 of the true "spirals" as "peculiars" at a redshift z ≃0.9. After allowing for such biases, the redshift distribution for normal spirals, together with their luminosity function derived as a function of redshift, indicates approximately 1 magnitude of luminosity evolution in B AB by z ≃ 1. The elliptical sample is too small for precise evolutionary constraints. However, we find a substantial increase in the proportion of galaxies with irregular morphology at large redshift from 9% ± 3% for 0.3 ≤ z ≤ 0.5 to 32% ± 12% for 0.7 ≤ z ≤ 0.9. These galaxies also appear to be the dominant cause of the rapid rise with redshift in the blue luminosity density identified in the redshift surveys. Although galaxies with irregular morphology may well comprise a mixture of
A comparison of star formation properties as a function of environment is made from the spectra of identically selected cluster and field galaxies in the CNOC 1 redshift survey of over 2000 galaxies in the fields of fifteen X-ray luminous clusters at 0.18 < z < 0.55. The ratio of bulge luminosity to total galaxy luminosity (B/T) is computed for galaxies in this sample, and this measure of morphology is compared with the galaxy star formation rate as determined from the [OII]λ3727 emission line. The mean star formation rate of cluster galaxies brighter than M r = −17.5+5 log h is found to vary from 0.17±0.02h −2 M ⊙ yr −1 at R 200 (1.5-2 h −1 Mpc) to zero in the cluster center, and is always less than the mean star formation rate of field galaxies, which is 0.39 ± 0.01h −2 M ⊙ yr −1 . It is demonstrated that this significant difference is not due exclusively to the difference in morphological type, as parameterized by the B/T value, by correcting for the B/Tradius relation. The distribution of [OII] equivalent widths among cluster galaxies is skewed toward lower values relative to the distribution for field galaxies of comparable physical size, B/T and redshift, with a statistical significance of more than 99%. The cluster environment affects not only the morphological mix of the galaxy population, but also suppresses the star formation rate within those galaxies, relative to morphologically similar galaxies in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.