This paper presents the results of a parametric experimental investigation aimed at optimizing the body force produced by single dielectric barrier discharge plasma actuators used for aerodynamic flow control. A primary goal of the study is the improvement of actuator authority for flow control applications at higher Reynolds number than previously possible. The study examines the effects of dielectric material and thickness, applied voltage amplitude and frequency, voltage waveform, exposed electrode geometry, covered electrode width, and multiple actuator arrays. The metric used to evaluate the performance of the actuator in each case is the measured actuator-induced thrust which is proportional to the total body force. It is demonstrated that actuators constructed with thick dielectric material of low dielectric constant produce a body force that is an order of magnitude larger than that obtained by the Kapton-based actuators used in many previous plasma flow control studies. These actuators allow operation at much higher applied voltages without the formation of discrete streamers which lead to body force saturation.Nomenclature b = electrode serration width E = electric field f = body force Gr = Grashof number h = electrode serration height Re = Reynolds number T = actuator-induced thrust U j = wall jet velocity V pp = peak-to-peak voltage V rms = root-mean-square voltage x = streamwise spatial coordinate y = wall-normal spatial coordinate " = dielectric constant = fluid density c = charge density
An experimental investigation of an unsteady adverse pressure gradient turbulent boundary layer is described. It is demonstrated that the local flow physics is largely dominated by an inflectional instability which gives rise to an embedded shear layer contained within the boundary layer. Experimental measurements are presented which are fully consistent with the presence of clockwise spanwise-oriented coherent vorticity within the embedded shear layer. Using embedded shear layer scaling parameters in the form of the shear layer vorticity thickness and the velocity defect at the upper inflection point, both the mean and the phase-averaged boundary layer velocity profiles exhibit similarity in both space and time over a large wall-normal extent. In a similar manner, the profiles of the streamwise-component turbulence intensity and Reynolds stress also exhibit similarity when scaled with the embedded shear layer parameters. The embedded shear layer scaling of previously published adverse pressure gradient turbulent boundary layer measurements confirms its generic applicability in a wide range of flow-field geometries and extending to high Reynolds numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.