This paper presents the results of a parametric experimental investigation aimed at optimizing the body force produced by single dielectric barrier discharge plasma actuators used for aerodynamic flow control. A primary goal of the study is the improvement of actuator authority for flow control applications at higher Reynolds number than previously possible. The study examines the effects of dielectric material and thickness, applied voltage amplitude and frequency, voltage waveform, exposed electrode geometry, covered electrode width, and multiple actuator arrays. The metric used to evaluate the performance of the actuator in each case is the measured actuator-induced thrust which is proportional to the total body force. It is demonstrated that actuators constructed with thick dielectric material of low dielectric constant produce a body force that is an order of magnitude larger than that obtained by the Kapton-based actuators used in many previous plasma flow control studies. These actuators allow operation at much higher applied voltages without the formation of discrete streamers which lead to body force saturation.Nomenclature b = electrode serration width E = electric field f = body force Gr = Grashof number h = electrode serration height Re = Reynolds number T = actuator-induced thrust U j = wall jet velocity V pp = peak-to-peak voltage V rms = root-mean-square voltage x = streamwise spatial coordinate y = wall-normal spatial coordinate " = dielectric constant = fluid density c = charge density
The coherent structure in the near-field of an axisymmetric turbulent jet at a Reynolds number of 3.8 × 105 and Mach number of 0.3 is experimentally characterized by a vector implementation of the proper orthogonal decomposition (POD). The POD eigenfunctions and associated eigenvalues are extracted at several selected streamwise locations in the initial region. The focus on the near-field is motivated by its importance in numerous technical applications. Results show a rapid energy convergence with POD mode number. Examination of the relative energy contained in the combined azimuthal and radial components of the POD modes reveals that it is comparable to that in the streamwise component. The streamwise evolution of the eigenvalue spectra is characterized by a remarkable variation in the azimuthal mode number energy distribution, leading to the dominance of azimuthal mode m = 1 beyond the end of the jet core. In contrast, a scalar implementation using only the streamwise component shows the dominance of mode m = 2 which is consistent with previous scalar implementations of the POD. For a given azimuthal mode number, the eigenvalue spectra exhibit a broad peak which occurs at a constant value of Strouhal number based on local shear layer momentum thickness and local jet maximum velocity. The phase information required for a local reconstruction of the jet structure is obtained by projecting the POD eigenmodes onto instantaneous realizations of the flow at fixed streamwise locations. The instantaneous realizations are obtained by utilizing cross-stream arrays of multi-sensor probes in conjunction with linear stochastic estimation (LSE). Results clearly show the local dynamic behaviour of each component of the jet structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.