We propose that cerebrovascular disease may predispose, precipitate, or perpetuate some geriatric depressive syndromes. The "vascular depression" hypothesis is supported by the comorbidity of depression, vascular disease, and vascular risk factors and the association of ischemic lesions to distinctive behavioral symptoms. Disruption of prefrontal systems or their modulating pathways by single lesions or by an accumulation of lesions exceeding a threshold are hypothesized to be central mechanisms in vascular depression. The vascular depression concept can generate studies of clinical and heuristic value. Drugs used for the prevention and treatment of cerebrovascular disease may be shown to reduce the risk for vascular depression or improve its outcomes. The choice of antidepressants in vascular depression may depend on their effect on neurologic recovery from ischemic lesions. Research can clarify the pathways to vascular depression by focusing on the site of the lesion, the resultant brain dysfunction, the presentation of depression and time of onset, and the contribution of nonbiological factors.
Mindfulness—as a state, trait, process, type of meditation, and intervention has proven to be beneficial across a diverse group of psychological disorders as well as for general stress reduction. Yet, there remains a lack of clarity in the operationalization of this construct, and underlying mechanisms. Here, we provide an integrative theoretical framework and systems-based neurobiological model that explains the mechanisms by which mindfulness reduces biases related to self-processing and creates a sustainable healthy mind. Mindfulness is described through systematic mental training that develops meta-awareness (self-awareness), an ability to effectively modulate one's behavior (self-regulation), and a positive relationship between self and other that transcends self-focused needs and increases prosocial characteristics (self-transcendence). This framework of self-awareness, -regulation, and -transcendence (S-ART) illustrates a method for becoming aware of the conditions that cause (and remove) distortions or biases. The development of S-ART through meditation is proposed to modulate self-specifying and narrative self-networks through an integrative fronto-parietal control network. Relevant perceptual, cognitive, emotional, and behavioral neuropsychological processes are highlighted as supporting mechanisms for S-ART, including intention and motivation, attention regulation, emotion regulation, extinction and reconsolidation, prosociality, non-attachment, and decentering. The S-ART framework and neurobiological model is based on our growing understanding of the mechanisms for neurocognition, empirical literature, and through dismantling the specific meditation practices thought to cultivate mindfulness. The proposed framework will inform future research in the contemplative sciences and target specific areas for development in the treatment of psychological disorders.
1. Differences in the distribution of relative regional cerebral blood flow during motor imagery and execution of a joy-stick movement were investigated in six healthy volunteers with the use of positron emission tomography (PET). Both tasks were compared with a common baseline condition, motor preparation, and with each other. Data were analyzed for individual subjects and for the group, and areas of significant flow differences were related to anatomy by magnetic resonance imaging (MRI). 2. Imagining movements activated a number of frontal and parietal regions: medial and lateral premotor areas, anterior cingulate areas, ventral opercular premotor areas, and parts of superior and inferior parietal areas were all activated bilaterally when compared with preparation to move. 3. Execution of movements compared with imagining movements led to additional activations of the left primary sensorimotor cortex and adjacent areas: dorsal parts of the medial and lateral premotor cortex; adjacent cingulate areas; and rostral parts of the left superior parietal cortex. 4. Functionally distinct rostral and caudal parts of the posterior supplementary motor area (operationally defined as the SMA behind the coronal plane at the level of the anterior commissure) were identified. In the group, the rostral part of posterior SMA was activated by imagining movements, and a more caudoventral part was additionally activated during their execution. A similar dissociation was observed in the cingulate areas. Individual subjects showed that the precise site of these activations varied with the individual anatomy; however, a constant pattern of preferential activation within separate but adjacent gyri of the left hemisphere was preserved. 5. Functionally distinct regions were also observed in the parietal lobe: the caudal part of the superior parietal cortex [medial Brodmann area (BA) 7] was activated by imagining movements compared with preparing to execute them, whereas the more rostral parts of the superior parietal lobe (BA 5), mainly on the left, were additionally activated by execution of the movements. 6. Within the operculum, three functionally distinct areas were observed: rostrally, prefrontal areas (BA 44 and 45) were more active during imagined than executed movements; a ventral premotor area (BA 6) was activated during both imagined and executed movements; and more caudally in the parietal lobe, an area was found that was mainly activated by execution presumably SII. 7. These data suggest that imagined movements can be viewed as a special form of "motor behavior' that, when compared with preparing to move, activate areas associated heretofore with selection of actions and multisensory integration.(ABSTRACT TRUNCATED AT 400 WORDS)
Hallucinations, perceptions in the absence of external stimuli, are prominent among the core symptoms of schizophrenia. The neural correlates of these brief, involuntary experiences are not well understood, and have not been imaged selectively. We have used new positron emission tomography (PET) methods to study the brain state associated with the occurrence of hallucinations in six schizophrenic patients. Here we present a group study of five patients with classic auditory verbal hallucinations despite medication, demonstrating activations in subcortical nuclei (thalamic, striatal), limbic structures (especially hippocampus), and paralimbic regions (parahippocampal and cingulate gyri, as well as orbitofrontal cortex). We also present a case study of a unique, drug-naive patient with visual as well as auditory verbal hallucinations, demonstrating activations in visual and auditory/linguistic association cortices as part of a distributed cortical-subcortical network. Activity in deep brain structures, identified with group analysis, may generate or modulate hallucinations, and the particular neocortical regions entrained in individual patients may affect their specific perceptual content. The interaction of these distributed neural systems provides a biological basis for the bizarre reports of schizophrenic patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.