The Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) is the standard method for bioorthogonal conjugation. However, current Cu(I) catalyst formulations are toxic, hindering their use in living systems. Here we report that BTTES, a tris(triazolylmethyl)amine-based ligand for Cu(I), promotes the cycloaddition reaction rapidly in living systems without apparent toxicity. This catalyst allows, for the first time, noninvasive imaging of fucosylated glycans during zebrafish early embryogenesis. We microinjected embryos with alkyne-bearing GDP-fucose at the one-cell stage and detected the metabolically incorporated unnatural sugars using the biocompatible click chemistry. Labeled glycans could be imaged in the enveloping layer of zebrafish embryos between blastula and early larval stages. This new method paves the way for rapid, noninvasive imaging of biomolecules in living organisms.
Raising the bar: The efficacy of bioorthogonal reactions for bioconjugation has been thoroughly evaluated in four different biological settings. Powered by the development of new biocompatible ligands, the copper‐catalyzed azide–alkyne cycloaddition (see picture) has brought about unsurpassed bioconjugation efficiency, and thus it holds great promise as a highly potent and adaptive tool for a broader spectrum of biological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.