The topological and the electrostatic properties of the
aspirin
drug molecule were determined from high-resolution X-ray diffraction
data at 90 K, and the corresponding results are compared with the
theoretical calculations. The electron density at the bond critical
point of all chemical bonds including the intermolecular interactions
of aspirin has been quantitatively described using Bader’s
quantum theory of “Atoms in Molecules”. The electrostatic
potential of the molecule emphasizes the preferable binding sites
of the drug and the interaction features of the molecule, which are
crucial for drug–receptor recognition. The topological analysis
of hydrogen bonds reveals the strength of intermolecular interactions.
Introduction: Bioactive molecules from natural sources having contraceptive properties were excellent alternatives for modern hormonal contraceptives. Researchers around the world were working on identifying contraceptive leads targeting the male reproductive system rather than the usual female contraceptives. The lack of proper understanding on male contraceptive protein drug targets leads to insufficient evidence on activities of identified contraceptive compounds. The proteins specific to the male reproductive system and involved in sperm-egg fusion will be an excellent drug target to identify the male non-hormonal, reversible contraceptive leads. Inhibiting sperm hyaluronidase activity by natural non-hormonal compounds will lead to reversible and non-hormonal male contraception. The Aegle marmelos Linn. is one such important medicinal plant with valuable phytocompounds, used traditionally as a potential contraceptive measure. The in vivo experiments on leaf extracts of Aegle marmelos. Linn containing terpenes, sterols, and alkaloids shows prominent contraceptive activities. Moreover, this study explores the potential ability of the leaf extract on inhibiting the sperm hyaluronidase action with additional molecular details on the interaction between sperm hyaluronidases and three phytocompounds such as aegeline, marmin, and marminol.Material and methods: The in vitro hyaluronidase inhibition assay and Computer Assisted Sperm Analysis (CASA) were used to evaluate the male contraceptive properties of the Aegle marmelos Linn. leaf extract. To identify the interaction profile of aegeline, marmin, and marmenol on sperm cell hyaluronidases the in-silico methods such as molecular docking, Non-Covalent Interaction analysis, Molecular dynamics, and Molecular Mechanics Poisson Boltzmann Surface Area were used.Results and discussion: The results of in vitro hyaluronidase inhibition assay and Computer Assisted Sperm Analysis shows the inhibition of hyaluronidase enzymatic activity and reduced sperm activities in the presence of leaf extracts. After incubation with leaf extracts for about 30 minutes time intervals show, the motility drops from progressive to non-progressive and ended up with complete immotile in 100 μg/ml concentration of leaf extract. The results of molecular docking, Non-Covalent Interaction analysis, Molecular dynamics, and Molecular mechanics Poisson Boltzmann Surface Area show that the phytocompounds marmin, and aegeline have the potential ability to inhibit sperm hyaluronidase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.