The foreign body reaction composed of macrophages and foreign body giant cells is the end-stage response of the inflammatory and wound healing responses following implantation of a medical device, prosthesis, or biomaterial. A brief, focused overview of events leading to the foreign body reaction is presented. The major focus of this review is on factors that modulate the interaction of macrophages and foreign body giant cells on synthetic surfaces where the chemical, physical, and morphological characteristics of the synthetic surface are considered to play a role in modulating cellular events. These events in the foreign body reaction include protein adsorption, monocyte/ macrophage adhesion, macrophage fusion to form foreign body giant cells, consequences of the foreign body response on biomaterials, and cross-talk between macrophages
The differentiation of floor plate cells and motor neurons can be induced by Sonic hedgehog (SHH), a secreted signaling protein that undergoes autoproteolytic cleavage to generate amino- and carboxy-terminal products. We have found that both floor plate cells and motor neurons are induced by the amino-terminal cleavage product of SHH (SHH-N). The threshold concentration of SHH-N required for motor neuron induction is about 5-fold lower than that required for floor plate induction. Higher concentrations of SHH-N can induce floor plate cells at the expense of motor neuron differentiation. Our results suggest that the induction of floor plate cells and motor neurons by the notochord in vivo is mediated by exposure of neural plate cells to different concentrations of the amino-terminal product of SHH autoproteolytic cleavage.
Implantation of biomaterial devices results in the well-known foreign body reaction consisting of monocytes, macrophages, and foreign body giant cells (FBGCs) at the material/tissue interface. We continue to address the hypothesis that material surface chemistry modulates the phenotypic expression of these cells. Utilizing our human monocyte culture system, we have used surface-modified polymers displaying hydrophobic, hydrophilic, and/or ionic chemistries to determine the cytokines/chemokines released from biomaterial-adherent macrophages/FBGCs. This study broadens our approach by using proteomic analysis to identify important factors expressed by these cells and further quantifies these molecules with ELISAs. Proteomic profiles changed over time suggesting that the adherent macrophages underwent a phenotypic switch. Macrophage/FBGC-derived proinflammatory cytokines, IL-1beta and IL-6, decreased with time, while the anti-inflammatory cytokine, IL-10, gradually increased with time. Resolution of the inflammatory response was also demonstrated by a decrease in chemoattractant IL-8 and MIP-1beta production with time. Material-dependent macrophage/FBGC activation was analyzed using cytokine/chemokine production and cellular adhesion. Monocyte/macrophage adhesion was similar on all surfaces, except for the hydrophilic/neutral surfaces that showed a significant decrease in cellular density and minimal FBGC formation. Normalizing the ELISA data based on the adherent cell population provided cytokine/chemokine concentrations produced per cell. This analysis showed that although there were fewer cells on the hydrophilic/neutral surface, these adherent cells were further activated to produce significantly greater amounts of each cytokine/chemokine tested than the other surfaces. This study clearly presents evidence that material surface chemistry can differentially affect monocyte/macrophage/FBGC adhesion and cytokine/chemokine profiles derived from activated macrophages/FBGCs adherent to biomaterial surfaces.
Midbrain dopaminergic neurons, whose loss in adults results in Parkinson's disease, can be specified during embryonic development by a contact-dependent signal from floor plate cells. Here we show that the amino-terminal product of Sonic hedgehog autoproteolysis (SHH-N), an inductive signal expressed by floor plate cells, can induce dopaminergic neurons in vitro. We show further that manipulations to increase the activity of cyclic AMP-dependent protein kinase A, which is known to antagonize hedgehog signaling, can block dopaminergic neuron induction by floor plate cells. Our results and those of other studies indicate that SHH-N can function in a dose-dependent manner to induce different cell types within the neural tube. Our results also provide the basis for a potential cell transplantation therapy for Parkinson's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.