We present 8 yr of long-term water quality, climatological, and water management data for 17 locations in Everglades National Park, Florida. Total phosphorus (P) concentration data from freshwater sites (typically Ͻ0.25 mol L Ϫ1 , or 8 g L Ϫ1 ) indicate the oligotrophic, P-limited nature of this large freshwater-estuarine landscape. Total P concentrations at estuarine sites near the Gulf of Mexico (average ഠ0.5 mol L Ϫ1 ) demonstrate the marine source for this limiting nutrient. This ''upside down'' phenomenon, with the limiting nutrient supplied by the ocean and not the land, is a defining characteristic of the Everglade landscape. We present a conceptual model of how the seasonality of precipitation and the management of canal water inputs control the marine P supply, and we hypothesize that seasonal variability in water residence time controls water quality through internal biogeochemical processing. Low freshwater inflows during the dry season increase estuarine residence times, enabling local processes to control nutrient availability and water quality. El Niño-Southern Oscillation (ENSO) events tend to mute the seasonality of rainfall without altering total annual precipitation inputs. The Niño3 ENSO index (which indicates an ENSO event when positive and a La Niña event when negative) was positively correlated with both annual rainfall and the ratio of dry season to wet season precipitation. This ENSO-driven disruption in seasonal rainfall patterns affected salinity patterns and tended to reduce marine inputs of P to Everglades estuaries. ENSO events also decreased dry season residence times, reducing the importance of estuarine nutrient processing. The combination of variable water management activities and interannual differences in precipitation patterns has a strong influence on nutrient and salinity patterns in Everglades estuaries.Nutrient enrichment and cultural eutrophication affect virtually all aquatic systems to some degree (Carpenter et al.
The muds of a shallow (7 m) site in Narragansett Bay, Rhode Island contained higher abundances of meiofauna (averaging 17×10 individuals per m and ash free dry weight of 2.9 g/m during a 3 year period) than have been found in any other sediment. The majority of sublittoral muds, worldwide, have been reported to contain about 10 individuals per m. This difference is attributed primarily to differences in sampling techniques and laboratory processing.Extremely high meiofaunal abundances may have also occurred because Narragansett Bay sediments were a foodrich environment. While the quantity of organic deposition in the bay is not unusually high for coastal waters, this input, primarily composed of diatom detritus, may contain an unusually high proportion of labile organics. Furthermore, meiofauna could have thrived because of spatial segregation of meiofauna and macrofauna. While meiofauna were concentrated at the sediment-water interface, most macrofauna were subsurface deposit feeders. Macrofaunal competition with, and ingestion of meiofauna may thus have been minimized.The seasonal cycles of meiofauna and macrofauna were similar. Highest abundances and biomass were observed in May and June and lowest values in the late summer and fall. Springtime increases of meiofaunal abundance were observed in all depth horizons, to 10 cm. We hypothesize that phytoplankton detritus accumulated in the sediment during the winter and early spring, and that the benthos responded to this store of food when temperatures rose rapidly in the late spring. By late summer, the stored detritus was exhausted and the benthos declined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.