The vaccinia virus A39R protein is a member of the semaphorin family. A39R.Fc protein was used to affinity purify an A39R receptor from a human B cell line. Tandem mass spectrometry of receptor peptides yielded partial amino acid sequences that allowed the identification of corresponding cDNA clones. Sequence analysis of this receptor indicated that it is a novel member of the plexin family and identified a semaphorin-like domain within this family, thus suggesting an evolutionary relationship between receptor and ligand. A39R up-regulated ICAM-1 on, and induced cytokine production from, human monocytes. These data, then, describe a receptor for an immunologically active semaphorin and suggest that it may serve as a prototype for other plexin-semaphorin binding pairs.
The ratio of stable carbon isotopes (δC) in plants and animals from Malaysian mangrove swamps, coastal inlets, and offshore waters was determined. Vascular plants of the swamps were isotopically distinct ( x±s.d.=-27.1±1.2‰) from plankton (-21.0±0.3‰) and other algae (-18.7±2.2‰). Animals from the swamps (-20.9±4.1‰) and inlets (-19.8±2.5‰) had a wide range of isotope ratios (-28.6 to-15.4‰), indicating consumption of both mangrove and algal carbon. Several commercially important species of bivalves, shrimp, crabs, and fish obtained carbon from mangrove trees. Mangrove carbon was carried offshore as detritus and was isotopically distinguishable in suspended particulate matter and sediments. Animals collected from 2 to 18 km offshore, however, showed no isotopic evidence of mangrove carbon assimilation, with ratios (-16.5±1.1‰, range-19.1 to-13.1‰) virtually identical to those reported for similar animals from other plankton-based ecosystems. Within groups of animals, isotope ratios reflected intergencric and interspecific differences in feeding and trophic position. In particular, there was a trend to less negative ratios with increasing trophic level.
Stable isotope ratios (513C) from samples of water, sediments, and biota traced the behavior of organic carbon for 3 summer months in estuarine mesocosms (three controls, three with added sewage sludge, three with added inorganic nutrients). Isotope ratios proved to be a useful quantitative tracer for sewage carbon as well as for the fresh phytoplanktonic carbon produced during nutrient fertilization. Sewage sludge sedimented within hours of its addition, and approximately 50% remained in sediments after 99 days. The sludge was not inert, but was biologically oxidized at rates similar to those of phytoplankton carbon. Its residence time in the water column was too short for uptake by zooplankton, but it was readily assimilated by some benthic organisms. Fresh phytoplanktonic carbon from nutrient-induced blooms was isotopically heavy and thus distinguishable from old primary production (fixed before the experiment). It flowed through the pelagic and benthic food webs more extensively and more uniformly than did sludge carbon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.