Triggering receptor expressed on myeloid cells 2 (TREM2) is an orphan immune receptor expressed on cells of myeloid lineage such as macrophages and microglia. The rare variant R47H TREM2 is associated with an increased risk for Alzheimer's disease, supporting the hypothesis that TREM2 loss of function may exacerbate disease progression. However, a complete knockout of the gene in different genetic models of neurodegenerative diseases has been reported to result in both protective and deleterious effects on disease-related end points and myeloid cell function. Here, we describe a transgenic mouse model and report that even in the absence of additional genetic perturbations, this variant clearly confers a loss of function on myeloid cells. The variant-containing myeloid cells exhibited subtle defects in survival and migration and displayed an unexpected dysregulation of cytokine responses in a lipopolysaccharide challenge environment. These subtle phenotypic defects with a gradation in severity across genotypes were confirmed in whole-genome RNA-Seq analyses of WT,, and myeloid cells under challenge conditions. Of note, TREM2-activating antibodies that boost proximal signaling abrogated survival defects conferred by the variant and also modulated migration and cytokine responses in an antibody-, ligand-, and challenge-dependent manner. In some instances, these antibodies also boosted WT myeloid cell function. Our studies provide a first glimpse into the boost in myeloid cell function that can be achieved by pharmacological modulation of TREM2 activity that can potentially be ameliorative in neurodegenerative diseases such as Alzheimer's disease.
Developmental genes are regulated by complex, distantly located cis-regulatory modules (CRMs), often forming genomic regulatory blocks (GRBs) that are conserved among vertebrates and among insects. We have investigated GRBs associated with Iroquois homeobox genes in 39 metazoans. Despite 600 million years of independent evolution, Iroquois genes are linked to ankyrin-repeat-containing Sowah genes in nearly all studied bilaterians. We show that Iroquois-specific CRMs populate the Sowah locus, suggesting that regulatory constraints underlie the maintenance of the Iroquois-Sowah syntenic block. Surprisingly, tetrapod Sowah orthologs are intronless and not associated with Iroquois; however, teleost and elephant shark data demonstrate that this is a derived feature, and that many Iroquois-CRMs were ancestrally located within Sowah introns. Retroposition, gene, and genome duplication have allowed selective elimination of Sowah exons from the Iroquois regulatory landscape while keeping associated CRMs, resulting in large associated gene deserts. These results highlight the importance of CRMs in imposing constraints to genome architecture, even across large phylogenetic distances, and of gene duplication-mediated genetic redundancy to disentangle these constraints, increasing genomic plasticity.
Inositol-1,4,5-triphosphate (IP3) kinase B (ITPKB) is a ubiquitously expressed lipid kinase that inactivates IP3, a secondary messenger that stimulates calcium release from the endoplasmic reticulum (ER). Genome-wide association studies have identified common variants in the ITPKB gene locus associated with reduced risk of sporadic Parkinson’s disease (PD). Here, we investigate whether ITPKB activity or expression level impacts PD phenotypes in cellular and animal models. In primary neurons, knockdown or pharmacological inhibition of ITPKB increased levels of phosphorylated, insoluble α-synuclein pathology following treatment with α-synuclein preformed fibrils (PFFs). Conversely, ITPKB overexpression reduced PFF-induced α-synuclein aggregation. We also demonstrate that ITPKB inhibition or knockdown increases intracellular calcium levels in neurons, leading to an accumulation of calcium in mitochondria that increases respiration and inhibits the initiation of autophagy, suggesting that ITPKB regulates α-synuclein pathology by inhibiting ER-to-mitochondria calcium transport. Furthermore, the effects of ITPKB on mitochondrial calcium and respiration were prevented by pretreatment with pharmacological inhibitors of the mitochondrial calcium uniporter complex, which was also sufficient to reduce α-synuclein pathology in PFF-treated neurons. Taken together, these results identify ITPKB as a negative regulator of α-synuclein aggregation and highlight modulation of ER-to-mitochondria calcium flux as a therapeutic strategy for the treatment of sporadic PD.
Members of Gcn5-related N-acetyltransferase (GNAT) superfamily catalyze the acetylation of a wide range of small molecule and protein substrates. Due to their abundance in all kingdoms of life and diversity of their functions, they are implicated in many aspects of eukaryotic and prokaryotic physiology. Although numerous GNATs have been identified thus far, many remain structurally and functionally uncharacterized. The elucidation of their structures and functions is critical for broadening our knowledge of this diverse and important superfamily. In this work, we present the structural and kinetic analyses of two previously uncharacterized bacterial acetyltransferases - SACOL1063 from Staphylococcus aureus strain COL and CD1211 from Clostridium difficile strain 630. Our structures of SACOL1063 show substantial flexibility of a loop that is likely responsible for substrate recognition and binding compared to structures of other homologs. In the CoA complex structure, we found two CoA molecules bound in both the canonical AcCoA/CoA-binding site and the acceptor-substrate-binding site. Our work also provides initial clues regarding the substrate specificity of these two enzymes; however, their native function(s) remain unknown. We found both proteins act as N-rather than O-acetyltransferases and preferentially acetylate L-threonine. The combination of structural and kinetic analyses of these two previously uncharacterized GNATs provides fundamental knowledge and a framework on which future studies can be built to elucidate their native functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.