To identify new therapeutic targets in acute myeloid leukemia (AML), we performed small-molecule and small-interfering RNA (siRNA) screens of primary AML patient samples. In 23% of samples, we found sensitivity to inhibition of colony-stimulating factor 1 (CSF1) receptor (CSF1R), a receptor tyrosine kinase responsible for survival, proliferation, and differentiation of myeloid-lineage cells. Sensitivity to CSF1R inhibitor GW-2580 was found preferentially in de novo and favorable-risk patients, and resistance to GW-2580 was associated with reduced overall survival. Using flow cytometry, we discovered that CSF1R is not expressed on the majority of leukemic blasts but instead on a subpopulation of supportive cells. Comparison of CSF1R-expressing cells in AML vs healthy donors by mass cytometry revealed expression of unique cell-surface markers. The quantity of CSF1R-expressing cells correlated with GW-2580 sensitivity. Exposure of primary AML patient samples to a panel of recombinant cytokines revealed that CSF1R inhibitor sensitivity correlated with a growth response to CSF1R ligand, CSF1, and other cytokines, including hepatocyte growth factor (HGF). The addition of CSF1 increased the secretion of HGF and other cytokines in conditioned media from AML patient samples, whereas adding GW-2580 reduced their secretion. In untreated cells, HGF levels correlated significantly with GW-2580 sensitivity. Finally, recombinant HGF and HS-5–conditioned media rescued cell viability after GW-2580 treatment in AML patient samples. Our results suggest that CSF1R-expressing cells support the bulk leukemia population through the secretion of HGF and other cytokines. This study identifies CSF1R as a novel therapeutic target of AML and provides a mechanism of paracrine cytokine/growth factor signaling in this disease.
In many malignancies, the tumor microenvironment includes CSF1R-expressing supportive monocyte/macrophages that promote tumor cell survival. For chronic lymphocytic leukemia (CLL), these supportive monocyte/macrophages are known as nurse-like cells (NLCs), although the potential effectiveness of selective small-molecule inhibitors of CSF1R against CLL is understudied. Here, we demonstrate the preclinical activity of two inhibitors of CSF1R, GW-2580 and ARRY-382, in primary CLL patient samples. We observed at least 25% of CLL samples showed sub-micromolar sensitivity to CSF1R inhibitors. This sensitivity was observed in samples with varying genetic and clinical backgrounds, although higher white cell count and monocyte cell percentage was associated with increased sensitivity. Depleting CD14-expressing monocytes preferentially decreased viability in samples sensitive to CSF1R inhibitors, and treating samples with CSF1R inhibitors eliminated the presence of NLCs in long-term culture conditions. These results indicate that CSF1R small-molecule inhibitors target CD14-expressing monocytes in the CLL microenvironment, thereby depriving leukemia cells of extrinsic support signals. In addition, significant synergy was observed combining CSF1R inhibitors with idelalisib or ibrutinib, two current CLL therapies that disrupt tumor cell intrinsic B-cell receptor signaling. These findings support the concept of simultaneously targeting supportive NLCs and CLL cells and demonstrate the potential clinical utility of this combination.
Cytochrome P450 3A4 (CYP3A4) is the dominant P450 involved in human xenobiotic metabolism. Competition for CYP3A4 therefore underlies several adverse drug-drug interactions. Despite its clinical significance, the mechanisms CYP3A4 uses to bind diverse ligands remain poorly understood. Highly monodisperse CYP3A4 embedded in anionic lipoprotein nanodiscs containing an equal mixture of POPC and POPG were used to determine which of the limiting kinetic schemes that include protein conformational change, conformational selection (CS) or induced fit (IF), best described the binding of four known irreversible inhibitors. Azamulin, retapamulin, pleuromutilin, and mibrefadil binding to CYP3A4 NDs conformed to a single-site binding model. Exponential fits of stopped-flow UVvis absorption spectroscopy data supported multiple-step binding mechanisms. Trends in the rates of relaxation to equilibrium with increasing ligand concentrations were ambiguous to whether IF or CS was involved; however, global fitting and consideration of the rate constants favored an IF mechanism. In the case of mibrefadil, a transient complex was observed in the stopped-flow UV-vis experiment, definitively assigning the presence of IF in ligand binding.While these studies only consider a small region of CYP3A4's vast ligand space, they provide kinetic evidence that CYP3A4 can utilize an IF mechanism.
Recent advances in understanding the role of JAK2 V617F mutation in Bcr-Abl negative myeloproliferative (MPD) diseases pathogenesis opened up a possibility to develop highly targeted therapies against these debilitating ailments. We used a Ba/F3 cell line expressing the V617F mutant of JAK2 to screen a focused small molecule library for potential inhibitors of JAK2 V617F-dependent proliferation. Further extensive SAR of initial hits resulted in identification of R723, a potent and selective JAK2 inhibitor. This molecule is strongly antiproliferative (IC50 130–200 nM) against mouse BaF3 cells used for initial screening as well as against human UKE1 and SET2 cell lines harboring the same mutation. On the other hand, R723 has only weak activity in IL2-dependent (i.e. JAK1/JAK3-dependent) proliferation assays performed with human primary T (IC50 1300 nM) and mouse T-cell leukaemia CTLL2 cells (IC50 600 nM). A 10 to 20 fold cell-based selectivity of R723 was further confirmed by measuring inhibition of constitutive STAT5 phosphorylation in SET2 and BaF3 cells versus inhibition of IL-2 inducible STAT5 phosphorylation in human primary T and mouse CTLL2 cells using FACS-based approach. Compound R723 has low nonspecific antiproliferative activity against JAK2-independent MOLT4, A549 and H1299 cell lines with an IC50 ranging from 4 to 6 uM. The molecule has been also proven to be potent (IC50 of 2 nM against JAK2 in biochemical assay) and highly selective (window of more than 500 fold over JAK1 and 10 fold over JAK3) inhibitor of JAK2 kinase in vitro. Moreover, when tested in biochemical assay against a panel of more than 200 kinases at a concentration of 20 nM (IC90 for JAK2), R723 inhibited none of them. The selectivity of R723 was further confirmed using a variety of cell-based assays probing T-, B- and mast cell activation. Compound R723 was further evaluated in a stress-induced erythropoiesis mouse model, where kinetics of EPO-dependent hematocrit recovery from phenylhydrazine-induced anemia was assessed. Significant delay in recovery was observed at doses of 75 and 100 mg/kg bid indicating strong compound effect on EPOR signaling in vivo. The result could not be attributed to general toxicity effects as 14 day toxicology study did not identify any abnormalities at doses tested. As a result, R723 could become the basis for next generation of potent and selective compounds targeting JAK2-dependent myeloproliferative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.