Splicing of the c-src N1 exon in neuronal cells depends in part on an intronic cluster of RNA regulatory elements called the downstream control sequence (DCS). Using site-specific cross-linking, RNA gel shift, and DCS RNA affinity chromatography assays, we characterized the binding of several proteins to specific sites along the DCS RNA. Heterogeneous nuclear ribonucleoprotein (hnRNP) H, polypyrimidine tract binding protein (PTB), and KH-type splicing-regulatory protein (KSRP) each bind to distinct elements within this sequence. We also identified a new 60-kDa tissue-specific protein that binds to the CUCUCU splicing repressor element of the DCS RNA. This protein was purified, partially sequenced, and cloned. The new protein (neurally enriched homolog of PTB [nPTB]) is highly homologous to PTB. Unlike PTB, nPTB is enriched in the brain and in some neural cell lines. Although similar in sequence, nPTB and PTB show significant differences in their properties. nPTB binds more stably to the DCS RNA than PTB does but is a weaker repressor of splicing in vitro. nPTB also greatly enhances the binding of two other proteins, hnRNP H and KSRP, to the DCS RNA. These experiments identify specific cooperative interactions between the proteins that assemble onto an intricate splicing-regulatory sequence and show how this hnRNP assembly is altered in different cell types by incorporating different but highly related proteins.Alternative splicing is a common mechanism for regulating gene expression in eukaryotes, allowing the generation of diverse proteins from the same primary RNA transcript (46,77,78). The alteration of splice site choice is thought to be determined by regulatory proteins that bind to the pre-mRNA transcript and affect spliceosome assembly on particular exons or splice sites. The best characterized of these splicing-regulatory proteins are a set of polypeptides called SR proteins that, among many other properties, bind to exonic splicing enhancer sequences (7,10,35,47,75). The SR proteins bound to an exonic enhancer are thought to stimulate spliceosome assembly at the adjacent splice sites. Another group of pre-mRNA binding proteins are the heterogeneous nuclear ribonucleoproteins (hnRNPs) (19,66). These are a diverse group of molecules that coat nascent pre-mRNAs, forming complex but little understood hnRNP structures (42, 52). The assembly of the spliceosome occurs after formation of these hnRNP complexes, and some hnRNPs have been implicated in splicing regulation. For example, hnRNP A1 is able to counteract the effect of SR proteins in some assays and can also apparently repress splicing through splicing silencer sequences (3,7,8,11,31). However, the assembly of a pre-mRNP complex is poorly understood. It is apparently highly cooperative, but the interactions between the different hnRNPs in these complexes are mostly unknown.Although widely expressed, the SR proteins and hnRNPs do vary in concentration between different tissues (31, 39). Changes in splicing patterns are thought to be determined, in part, ...
Spleen tyrosine kinase (Syk) signaling is central to phagocytosis‐based, antibody‐mediated platelet destruction in adults with immune thrombocytopenia (ITP). Fostamatinib, an oral Syk inhibitor, produced sustained on‐treatment responses in a phase 2 ITP study. In two parallel, phase 3, multicenter, randomized, double‐blind, placebo‐controlled trials (FIT1 and FIT2), patients with persistent/chronic ITP were randomized 2:1 to fostamatinib (n = 101) or placebo (n = 49) at 100 mg BID for 24 weeks with a dose increase in nonresponders to 150 mg BID after 4 weeks. The primary endpoint was stable response (platelets ≥50 000/μL at ≥4 of 6 biweekly visits, weeks 14‐24, without rescue therapy). Baseline median platelet count was 16 000/μL; median duration of ITP was 8.5 years. Stable responses occurred in 18% of patients on fostamatinib vs. 2% on placebo (P = .0003). Overall responses (defined retrospectively as ≥1 platelet count ≥50 000/μL within the first 12 weeks on treatment) occurred in 43% of patients on fostamatinib vs. 14% on placebo (P = .0006). Median time to response was 15 days (on 100 mg bid), and 83% responded within 8 weeks. The most common adverse events were diarrhea (31% on fostamatinib vs. 15% on placebo), hypertension (28% vs. 13%), nausea (19% vs. 8%), dizziness (11% vs. 8%), and ALT increase (11% vs. 0%). Most events were mild or moderate and resolved spontaneously or with medical management (antihypertensive, anti‐motility agents). Fostamatinib produced clinically‐meaningful responses in ITP patients including those who failed splenectomy, thrombopoietic agents, and/or rituximab. Fostamatinib is a novel ITP treatment option that targets an important mechanism of ITP pathogenesis.
Polypyrimidine tract binding protein (PTB) is known to silence the splicing of many alternative exons. However, exons repressed by PTB are affected by other RNA regulatory elements and proteins. This makes it difficult to dissect the structure of the pre-mRNP complexes that silence splicing, and to understand the role of PTB in this process. We determined the minimal requirements for PTB-mediated splicing repression. We find that the minimal sequence for high affinity binding by PTB is relatively large, containing multiple polypyrimidine elements. Analytical ultracentrifugation and proteolysis mapping of RNA cross-links on the PTB protein indicate that most PTB exists as a monomer, and that a polypyrimidine element extends across multiple PTB domains. The high affinity site is bound initially by a PTB monomer and at higher concentrations by additional PTB molecules. Significantly, this site is not sufficient for splicing repression when placed in the 3 splice site of a strong test exon. Efficient repression requires a second binding site within the exon itself or downstream from it. This second site enhances formation of a multimeric PTB complex, even if it does not bind well to PTB on its own. These experiments show that PTB can be sufficient to repress splicing of an otherwise constitutive exon, without binding sites for additional regulatory proteins and without competing with U2AF binding. The minimal complex mediating splicing repression by PTB requires two binding sites bound by an oligomeric PTB complex.
The elongation of RNA chains during transcription occurs in a ternary complex containing RNA polymerase (RNAP), DNA template, and nascent RNA. It is shown here that elongating RNAP from Escherichia coli can switch DNA templates by means of end-to-end transposition without loss of the transcript. After the switch, transcription continues on the new template. With the use of defined short DNA fragments as switching templates, RNAP-DNA interactions were dissected into two spatially distinct components, each contributing to the stability of the elongating complex. The front (F) interaction occurs ahead of the growing end of RNA. This interaction is non-ionic and requires 7 to 9 base pairs of intact DNA duplex. The rear (R) interaction is ionic and requires approximately six nucleotides of the template DNA strand behind the active site and one nucleotide ahead of it. The nontemplate strand is not involved. With the use of protein-DNA crosslinking, the F interaction was mapped to the conserved zinc finger motif in the NH2-terminus of the beta' subunit and the R interaction, to the COOH-terminal catalytic domain of the beta subunit. Mutational disruption of the zinc finger selectively destroyed the F interaction and produced a salt-sensitive ternary complex with diminished processivity. A model of the ternary complex is proposed here that suggests that trilateral contacts in the active center maintain the nonprocessive complex, whereas a front-end domain including the zinc finger ensures processivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.