[1] Satellite observations of carbon monoxide (CO) from the Measurements of Pollution in the Troposphere (MOPITT) instrument are combined with measurements from the Transport and Chemical Evolution Over the Pacific (TRACE-P) aircraft mission over the northwest Pacific and with a global three-dimensional chemical transport model (GEOS-CHEM) to quantify Asian pollution outflow and its trans-Pacific transport during spring 2001. Global CO column distributions in MOPITT and GEOS-CHEM are highly correlated (R 2 = 0.87), with no significant model bias. The largest regional bias is over Southeast Asia, where the model is 18% too high. A 60% decrease of regional biomass burning emissions in the model (to 39 Tg yr À1 ) would correct the discrepancy; this result is consistent with TRACE-P observations. MOPITT and TRACE-P also give consistent constraints on the Chinese source of CO from fuel combustion (181 Tg CO yr À1 ). Four major events of trans-Pacific transport of Asian pollution in spring 2001 were seen by MOPITT, in situ platforms, and GEOS-CHEM. One of them was sampled by TRACE-P (26-27 February) as a succession of pollution layers over the northeast Pacific. These layers all originated from one single event of Asian outflow that split into northern and southern plumes over the central Pacific. The northern plume (sampled at 6-8 km off California) had no ozone enhancement. The southern subsiding plume (sampled at 2-4 km west of Hawaii) contained a 8-17 ppbv ozone enhancement, driven by decomposition of peroxyacetylnitrate (PAN) to nitrogen oxides (NO x ). This result suggests that PAN decomposition in trans-Pacific pollution plumes subsiding over the United States could lead to significant enhancements of surface ozone.
The Transport and Chemical Evolution over the Pacific (TRACE‐P) experiment was conducted between February and April 2001. It included extensive chemical sampling by two aircraft based primarily in Hong Kong and Yokota Air Base, Japan. TRACE‐P examined pathways for the outflow of chemically and radiatively important gases and aerosols and their precursors from eastern Asia to the western Pacific and explored the chemical evolution of Asian outflow. This paper describes meteorological conditions and transport pathways over the Pacific Basin during TRACE‐P. Meteorological conditions changed rapidly during the period due to the seasonal winter to spring transition and the decay of prolonged ENSO cold phase (La Nina) conditions. To document these changes, TRACE‐P was divided into two halves, and mean flow patterns during each half are presented and discussed. Important circulation features are the semipermanent Siberian anticyclone and transient middle latitude cyclones that form near eastern Asia and then move eastward over the northern Pacific. Five‐day backward trajectories from the various flight tracks show that air sampled by the aircraft had been transported from a variety of locations. Some parcels remained over the tropical western North Pacific during the entire period, while other important origins were Southeast Asia, Africa, and central Asia. Specifically, lower tropospheric flight segments out of Hong Kong sampled both prefrontal maritime air as well as postfrontal air from the Asian continent. Conversely, low‐level flight segments out of Yokota, Japan mostly sampled postfrontal Asian air. Southern portions of middle and upper tropospheric flight segments from Hong Kong sampled air previously in the deep tropics, while the more northerly flight segments sampled air that originated from the west (e.g., passing over central Africa and India). Most upper level flight segments from Yokota sampled air arriving from the west. Patterns of satellite‐derived precipitation and lightning are described. TRACE‐P occurs during a neutral to weak La Nina period of relatively cold sea surface temperatures in the tropical Pacific. Compared with climatology, the TRACE‐P period exhibits deep convection located west of its typical position; however, tropospheric flow patterns do not exhibit a strong La Nina signal. Circulation patterns during TRACE‐P are found to be generally similar to those during NASA's PEM WEST‐B mission that occurred in the same region during February–March 1994.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.