By imposing a limit on the proliferative lifespan of most somatic cells, telomere erosion represents an innate mechanism for tumor suppression and may contribute to age-related disease. A detailed understanding of the pathways that link shortened telomeres to replicative senescence has been severely hindered by the inability of current methods to analyze telomere dynamics in detail. Here we describe single telomere length analysis (STELA), a PCR-based approach that accurately measures the full spectrum of telomere lengths from individual chromosomes. STELA analysis of human XpYp telomeres in fibroblasts identifies several features of telomere biology. We observe bimodal distributions of telomeres in normal fibroblasts; these distributions result from inter-allelic differences of up to 6.5 kb, indicating that unexpectedly large-scale differences in zygotic telomere length are maintained throughout development. Most telomeres shorten in a gradual fashion consistent with simple losses through end replication, and the rates of erosion are independent of allele size. Superimposed on this are occasional, more substantial changes in length, which may be the consequence of additional mutational mechanisms. Notably, some alleles show almost complete loss of TTAGGG repeats at senescence.
Cellular senescence, the irreversible proliferative arrest seen in somatic cells after a limited number of divisions, is considered a crucial barrier to cancer, but direct evidence for this in vivo was lacking until recently. The best-known form of human cell senescence is attributed to telomere shortening and a DNA-damage response through p53 and p21. There is also a more rapid form of senescence, dependent on the p16-retinoblastoma pathway. p16 (CDKN2A) is a known melanoma susceptibility gene. Here, we use retrovirally mediated gene transfer to confirm that the normal form of senescence in cultured human melanocytes involves p16, since disruption of the p16/retinoblastoma pathway is required as well as telomerase activation for immortalisation. Expression (immunostaining) patterns of senescence mediators and markers in melanocytic lesions provide strong evidence that cell senescence occurs in benign melanocytic naevi (moles) in vivo and does not involve p53 or p21 upregulation, although p16 is widely expressed. In comparison, dysplastic naevi and early (radial growth-phase, RGP) melanomas show less p16 and some p53 and p21 immunostaining. All RGP melanomas expressed p21, suggesting areas of p53-mediated senescence, while most areas of advanced (vertical growthphase) melanomas lacked both p16 and p21, implying escape from both forms of senescence (immortalisation). Moreover, nuclear p16 but not p21 expression can be induced in human melanocytes by oncogenic BRAF, as found in around 80% of naevi. We conclude that cell senescence can form a barrier to melanoma development. This also provides a potential explanation of why p16 is a melanoma suppressor gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.