Monk and Osborne (Sci Educ 81:405-424, 1997) provide a rigorous justification for why history and philosophy of science should be incorporated as an integral component of instruction and a model for how history of science should be used to promote learning of and about science. In the following essay we critique how history of science is used on this model, and in particular, their advocacy of a direct comparison of students' conceptions of scientific phenomena with those of past scientists. We propose instead an alternative approach that promotes a more active engagement by inviting students to engage in the sort of reasoning that led past scientists to reach insights about scientific phenomena. As an example we describe in detail two lesson plans taken from an eightclass unit developed with reference to the history of research on sickle-cell anemia. These lessons demonstrate how an open-ended, problem-solving approach can be used to help students deepen their understanding of science. Throughout the unit students are invited to explicitly and reflectively consider the implications of their reasoning about the disease for their understanding of nature of science issues. The essay draws attention to how this alternative approach actually more closely aligns with the constructivist rationale Monk and Osborne have articulated. It concludes with a brief summary of empirical research demonstrating the efficacy of this approach.
The term "weight" has multiple related meanings in both scientific and everyday usage. Even among experts and in textbooks, weight is ambiguously defined as either the gravitational force on an object or operationally as the magnitude of the force an object exerts on a measuring scale. This poses both conceptual and language difficulties for learners, especially for accelerating objects where the scale reading is different from the gravitational force. But while the underlying physical constructs behind the two referents for the term weight (and their relation to each other) are well understood scientifically, it is unclear how the concept of weight should be introduced to students and how the language ambiguities should be dealt with. We investigated treatments of weight in a sample of twenty introductory college physics textbooks, analyzing and coding their content based on the definition adopted, how the distinct constructs were dealt with in various situations, terminologies used, and whether and how language issues were handled. Results indicate that language-related issues, such as different, inconsistent, or ambiguous uses of the terms weight, "apparent weight," and "weightlessness," were prevalent both across and within textbooks. The physics of the related constructs was not always clearly presented, particularly for accelerating bodies such as astronauts in spaceships, and the language issue was rarely addressed. Our analysis of both literature and textbooks leads us to an instructional position which focuses on the physics constructs before introducing the term weight, and which explicitly discusses the associated language issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.