Summary
Responses to anti-PD-1 immunotherapy occur but are infrequent in bladder cancer. The specific T cells that mediate tumor rejection are unknown. T cells from human bladder tumors and non-malignant tissue were assessed with single-cell RNA and paired T cell receptor (TCR) sequencing of 30,604 T cells from 7 patients. We find that the states and repertoires of CD8
+
T cells are not distinct in tumors compared with non-malignant tissues. In contrast, single-cell analysis of CD4
+
T cells demonstrates several tumor-specific states, including multiple distinct states of regulatory T cells. Surprisingly, we also find multiple cytotoxic CD4
+
T cell states that are clonally expanded. These CD4
+
T cells can kill autologous tumors in an MHC class II-dependent fashion and are suppressed by regulatory T cells. Further, a gene signature of cytotoxic CD4
+
T cells in tumors predicts a clinical response in 244 metastatic bladder cancer patients treated with anti-PD-L1.
Granzyme A (GzmA) induces a caspase-independent cell death pathway characterized by single-stranded DNA nicks and other features of apoptosis. A GzmA-activated DNase (GAAD) is in an ER associated complex containing pp32 and the GzmA substrates SET, HMG-2, and Ape1. We show that GAAD is NM23-H1, a nucleoside diphosphate kinase implicated in suppression of tumor metastasis, and its specific inhibitor (IGAAD) is SET. NM23-H1 binds to SET and is released from inhibition by GzmA cleavage of SET. After GzmA loading or CTL attack, SET and NM23-H1 translocate to the nucleus and SET is degraded, allowing NM23-H1 to nick chromosomal DNA. GzmA-treated cells with silenced NM23-H1 expression are resistant to GzmA-mediated DNA damage and cytolysis, while cells overexpressing NM23-H1 are more sensitive.
The three-dimensional thymic microenvironment and calcium signaling pathways are essential for driving positive selection of developing T cells. However, the nature of calcium signals and the diversity of their effects in the thymus are unknown. We describe here a thymic slice preparation for visualizing thymocyte motility and signaling in real time with two-photon microscopy. Naive thymocytes were highly motile at low intracellular calcium concentrations, but during positive selection cells became immobile and showed sustained calcium concentration oscillations. Increased intracellular calcium was necessary and sufficient to arrest thymocyte motility. The calcium dependence of motility acts to prolong thymocyte interactions with antigen-bearing stromal cells, promoting sustained signaling that may enhance the expression of genes underlying positive selection.
SUMMARY
T cell development requires sequential localization of thymocyte subsets to distinct thymic microenvironments. To address mechanisms governing this segregation, we used 2-photon microscopy to visualize the migration of purified thymocyte subsets in defined microenvironments within thymic slices. Double-negative (CD4−8−) and double-positive (CD4+8+; DP) thymocytes were strictly confined to cortex where they moved slowly without directional bias. DP cells accumulated and migrated more rapidly in a specialized inner-cortical microenvironment, but were excluded from the medulla by an inability to migrate on medullary substrates. In contrast, CD4 single-positive (SP) thymocytes migrated directionally towards the medulla, where they accumulated and moved very rapidly. Our results reveal a requisite two-step process governing CD4 SP medullary localization: the chemokine receptor CCR7 mediated chemotaxis of CD4 SP cells towards the medulla, whereas a distinct pertussis-toxin sensitive pathway was required for medullary entry. These findings suggest that developmentally regulated responses to both chemotactic signals and specific migratory substrates guide thymocytes to specific locations in the thymus as they mature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.