The number of research publications in various disciplines is growing exponentially. Researchers and scientists are increasingly finding themselves in the position of having to quickly understand large amounts of technical material. In this paper we present the first steps in producing an automatically generated, readily consumable, technical survey. Specifically we explore the combination of citation information and summarization techniques. Even though prior work (Teufel et al., 2006) argues that citation text is unsuitable for summarization, we show that in the framework of multi-document survey creation, citation texts can play a crucial role.
This article examines the application of two single-document sentence compression techniques to the problem of multi-document summarization-a "parse-and-trim" approach and a statistical noisy-channel approach. We introduce the Multi-Candidate Reduction (MCR) framework for multi-document summarization, in which many compressed candidates are generated for each source sentence. These candidates are then selected for inclusion in the final summary based on a combination of static and dynamic features. Evaluations demonstrate that sentence compression is a valuable component of a larger multi-document summarization framework.
Researchers and scientists increasingly find themselves in the position of having to quickly understand large amounts of technical material. Our goal is to effectively serve this need by using bibliometric text mining and summarization techniques to generate summaries of scientific literature. We show how we can use citations to produce automatically generated, readily consumable, technical extractive summaries. We first propose C-LexRank, a model for summarizing single scientific articles based on citations, which employs community detection and extracts salient information-rich sentences. Next, we further extend our experiments to summarize a set of papers, which cover the same scientific topic. We generate extractive summaries of a set of Question Answering (QA) and Dependency Parsing (DP) papers, their abstracts, and their citation sentences and show that citations have unique information amenable to creating a summary.
We present two approaches to email thread summarization: Collective Message Summarization (CMS) applies a multi-document summarization approach, while Individual Message Summarization (IMS) treats the problem as a sequence of single-document summarization tasks. Both approaches are implemented in our general framework driven by sentence compression. Instead of a purely extractive approach, we employ linguistic and statistical methods to generate multiple compressions, and then select from those candidates to produce a final summary. We demonstrate these ideas on the Enron collection-a very challenging corpus because of the highly technical language. Experimental results point to two findings: that CMS represents a better approach to email thread summarization, and that current sentence compression techniques do not improve summarization performance in this genre.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.