Even though considerable attention has been given to the polarity of words (positive and negative) and the creation of large polarity lexicons, research in emotion analysis has had to rely on limited and small emotion lexicons. In this paper we show how the combined strength and wisdom of the crowds can be used to generate a large, high-quality, word-emotion and word-polarity association lexicon quickly and inexpensively. We enumerate the challenges in emotion annotation in a crowdsourcing scenario and propose solutions to address them. Most notably, in addition to questions about emotions associated with terms, we show how the inclusion of a word choice question can discourage malicious data entry, help identify instances where the annotator may not be familiar with the target term (allowing us to reject such annotations), and help obtain annotations at sense level (rather than at word level). We conducted experiments on how to formulate the emotionannotation questions, and show that asking if a term is associated with an emotion leads to markedly higher inter-annotator agreement than that obtained by asking if a term evokes an emotion.
Here for the first time we present a shared task on detecting stance from tweets: given a tweet and a target entity (person, organization, etc.), automatic natural language systems must determine whether the tweeter is in favor of the given target, against the given target, or whether neither inference is likely. The target of interest may or may not be referred to in the tweet, and it may or may not be the target of opinion. Two tasks are proposed. Task A is a traditional supervised classification task where 70% of the annotated data for a target is used as training and the rest for testing. For Task B, we use as test data all of the instances for a new target (not used in task A) and no training data is provided. Our shared task received submissions from 19 teams for Task A and from 9 teams for Task B. The highest classification F-score obtained was 67.82 for Task A and 56.28 for Task B. However, systems found it markedly more difficult to infer stance towards the target of interest from tweets that express opinion towards another entity.
We describe a state-of-the-art sentiment analysis system that detects (a) the sentiment of short informal textual messages such as tweets and SMS (message-level task) and (b) the sentiment of a word or a phrase within a message (term-level task). The system is based on a supervised statistical text classification approach leveraging a variety of surface-form, semantic, and sentiment features. The sentiment features are primarily derived from novel high-coverage tweet-specific sentiment lexicons. These lexicons are automatically generated from tweets with sentiment-word hashtags and from tweets with emoticons. To adequately capture the sentiment of words in negated contexts, a separate sentiment lexicon is generated for negated words. The system ranked first in the SemEval-2013 shared task `Sentiment Analysis in Twitter' (Task 2), obtaining an F-score of 69.02 in the message-level task and 88.93 in the term-level task. Post-competition improvements boost the performance to an F-score of 70.45 (message-level task) and 89.50 (term-level task). The system also obtains state-of-the-art performance on two additional datasets: the SemEval-2013 SMS test set and a corpus of movie review excerpts. The ablation experiments demonstrate that the use of the automatically generated lexicons results in performance gains of up to 6.5 absolute percentage points.
We present the SemEval-2018 Task 1: Affect in Tweets, which includes an array of subtasks on inferring the affectual state of a person from their tweet. For each task, we created labeled data from English, Arabic, and Spanish tweets. The individual tasks are: 1. emotion intensity regression, 2. emotion intensity ordinal classification, 3. valence (sentiment) regression, 4. valence ordinal classification, and 5. emotion classification. Seventy-five teams (about 200 team members) participated in the shared task. We summarize the methods, resources, and tools used by the participating teams, with a focus on the techniques and resources that are particularly useful. We also analyze systems for consistent bias towards a particular race or gender. The data is made freely available to further improve our understanding of how people convey emotions through language.
Words play a central role in language and thought. Factor analysis studies have shown that the primary dimensions of meaning are valence, arousal, and dominance (VAD). We present the NRC VAD Lexicon, which has human ratings of valence, arousal, and dominance for more than 20,000 English words. We use Best-Worst Scaling to obtain fine-grained scores and address issues of annotation consistency that plague traditional rating scale methods of annotation. We show that the ratings obtained are vastly more reliable than those in existing lexicons. We also show that there exist statistically significant differences in the shared understanding of valence, arousal, and dominance across demographic variables such as age, gender, and personality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.