Here for the first time we present a shared task on detecting stance from tweets: given a tweet and a target entity (person, organization, etc.), automatic natural language systems must determine whether the tweeter is in favor of the given target, against the given target, or whether neither inference is likely. The target of interest may or may not be referred to in the tweet, and it may or may not be the target of opinion. Two tasks are proposed. Task A is a traditional supervised classification task where 70% of the annotated data for a target is used as training and the rest for testing. For Task B, we use as test data all of the instances for a new target (not used in task A) and no training data is provided. Our shared task received submissions from 19 teams for Task A and from 9 teams for Task B. The highest classification F-score obtained was 67.82 for Task A and 56.28 for Task B. However, systems found it markedly more difficult to infer stance towards the target of interest from tweets that express opinion towards another entity.
We can often detect from a person's utterances whether he/she is in favor of or against a given target entitytheir stance towards the target. However, a person may express the same stance towards a target by using negative or positive language. Here for the first time we present a dataset of tweet-target pairs annotated for both stance and sentiment. The targets may or may not be referred to in the tweets, and they may or may not be the target of opinion in the tweets. Partitions of this dataset were used as training and test sets in a SemEval-2016 shared task competition. We propose a simple stance detection system that outperforms submissions from all 19 teams that participated in the shared task. Additionally, access to both stance and sentiment annotations allows us to explore several research questions. We show that while knowing the sentiment expressed by a tweet is beneficial for stance classification, it alone is not sufficient. Finally, we use additional unlabeled data through distant supervision techniques and word embeddings to further improve stance classification.
Current models for stance classification often treat each target independently, but in many applications, there exist natural dependencies among targets, e.g., stance towards two or more politicians in an election or towards several brands of the same product. In this paper, we focus on the problem of multi-target stance detection. We present a new dataset that we built for this task. Furthermore, We experiment with several neural models on the dataset and show that they are more effective in jointly modeling the overall position towards two related targets compared to independent predictions and other models of joint learning, such as cascading classification. We make the new dataset publicly available, in order to facilitate further research in multi-target stance classification.
Argumentation mining and stance classification were recently introduced as interesting tasks in text mining. In this paper, a novel framework for argument tagging based on topic modeling is proposed. Unlike other machine learning approaches for argument tagging which often require large set of labeled data, the proposed model is minimally supervised and merely a one-to-one mapping between the pre-defined argument set and the extracted topics is required. These extracted arguments are subsequently exploited for stance classification. Additionally, a manuallyannotated corpus for stance classification and argument tagging of online news comments is introduced and made available. Experiments on our collected corpus demonstrate the benefits of using topic-modeling for argument tagging. We show that using Non-Negative Matrix Factorization instead of Latent Dirichlet Allocation achieves better results for argument classification, close to the results of a supervised classifier. Furthermore, the statistical model that leverages automatically-extracted arguments as features for stance classification shows promising results.
One may express favor (or disfavor) towards a target by using positive or negative language. Here for the first time we present a dataset of tweets annotated for whether the tweeter is in favor of or against pre-chosen targets, as well as for sentiment. These targets may or may not be referred to in the tweets, and they may or may not be the target of opinion in the tweets. We develop a simple stance detection system that outperforms all 19 teams that participated in a recent shared task competition on the same dataset (SemEval-2016 Task #6). Additionally, access to both stance and sentiment annotations allows us to conduct several experiments to tease out their interactions. We show that while sentiment features are useful for stance classification, they alone are not sufficient. We also show the impacts of various features on detecting stance and sentiment, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.