Umme Aymun SIDDIQUA †a) , Abu Nowshed CHY †b) , Nonmembers, and Masaki AONO †c) , Member SUMMARY Stance detection in twitter aims at mining user stances expressed in a tweet towards a single or multiple target entities. Detecting and analyzing user stances from massive opinion-oriented twitter posts provide enormous opportunities to journalists, governments, companies, and other organizations. Most of the prior studies have explored the traditional deep learning models, e.g., long short-term memory (LSTM) and gated recurrent unit (GRU) for detecting stance in tweets. However, compared to these traditional approaches, recently proposed densely connected bidirectional LSTM and nested LSTMs architectures effectively address the vanishinggradient and overfitting problems as well as dealing with long-term dependencies. In this paper, we propose a neural network model that adopts the strengths of these two LSTM variants to learn better long-term dependencies, where each module coupled with an attention mechanism that amplifies the contribution of important elements in the final representation. We also employ a multi-kernel convolution on top of them to extract the higherlevel tweet representations. Results of extensive experiments on single and multi-target benchmark stance detection datasets show that our proposed method achieves substantial improvement over the current state-of-the-art deep learning based methods.