The tribological behavior and the related airborne particles emission of three copper-free automotive friction materials are investigated. The tests were conducted using a pin-on-disc tribometer equipped with a specifically designed clean-enclosure chamber for the emission measurement. Particle number concentration from particle size 0.3 µm up to 10 µm and the mass of emitted particles between 1 µm to 10 µm were measured. Particular emphasis was given to the chemical composition of the bulk materials, the friction layers and the emissions, in order to explain the acting wear mechanisms, and the recorded emission of airborne particles. The results indicate that the recorded emissions do not correlate with the friction coefficient and the wear rates, since the wear mechanisms exert a different influence on the tribological and emission behavior of the materials under study.
Phenolic resins are the most commonly used binders in brake pads for automotive disc brake systems owing to their affordability and thermal properties. However, they also show some limitations related to their crosslinking mechanism. Benzoxazine resins present themselves as possible alternatives for this application by providing enhanced thermal properties as well as other industrially attractive characteristics such as lower moisture absorption and unlimited shelf life. This study investigates the thermal properties of two different benzoxazine resins, with the aim of assessing their capabilities as binder for brake pad and of understanding how to process them in order to actually employ them as such. DSC, TGA, hardness and tribological analyses were carried out on neat resin samples and on friction materials containing them as binder. The presence of several concurring reactions was detected during the crosslinking reaction of benzoxazine resins. The benzoxazine resins showed lower mass loss respect to a phenolic resin in the temperature range of interest for commercial brake pads application. Friction material containing benzoxazine resin binder showed promising tribological results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.