From transportation networks to complex infrastructures, and to social and communication networks, a large variety of systems can be described in terms of multiplexes formed by a set of nodes interacting through different networks (layers). Multiplexes may display an increased fragility with respect to the single layers that constitute them. However, so far the overlap of the links in different layers has been mostly neglected, despite the fact that it is an ubiquitous phenomenon in most multiplexes. Here, we show that the overlap among layers can improve the robustness of interdependent multiplex systems and change the critical behavior of the percolation phase transition in a complex way.
Bootstrap percolation is a simple but nontrivial model. It has applications in many areas of science and has been explored on random networks for several decades. In single-layer (simplex) networks, it has been recently observed that bootstrap percolation, which is defined as an incremental process, can be seen as the opposite of pruning percolation, where nodes are removed according to a connectivity rule. Here we propose models of both bootstrap and pruning percolation for multiplex networks. We collectively refer to these two models with the concept of "weak" percolation, to distinguish them from the somewhat classical concept of ordinary ("strong") percolation. While the two models coincide in simplex networks, we show that they decouple when considering multiplexes, giving rise to a wealth of critical phenomena. Our bootstrap model constitutes the simplest example of a contagion process on a multiplex network and has potential applications in critical infrastructure recovery and information security. Moreover, we show that our pruning percolation model may provide a way to diagnose missing layers in a multiplex network. Finally, our analytical approach allows us to calculate critical behavior and characterize critical clusters.
We present an analytical approach for bond percolation on multiplex networks and use it to determine the expected size of the giant connected component and the value of the critical bond occupation probability in these networks. We advocate the relevance of these tools to the modeling of multilayer robustness and contribute to the debate on whether any benefit is to be yielded from studying a full multiplex structure as opposed to its monoplex projection, especially in the seemingly irrelevant case of a bond occupation probability that does not depend on the layer. Although we find that in many cases the predictions of our theory for multiplex networks coincide with previously derived results for monoplex networks, we also uncover the remarkable result that for a certain class of multiplex networks, well described by our theory, new critical phenomena occur as multiple percolation phase transitions are present. We provide an instance of this phenomenon in a multiplex network constructed from London rail and European air transportation data sets.
k-core percolation is an extension of the concept of classical percolation and is particularly relevant to understanding the resilience of complex networks under random damage. A new analytical formalism has been recently proposed to deal with heterogeneous k-cores, where each vertex is assigned a local threshold k(i). In this Letter we identify a binary mixture of heterogeneous k-cores which exhibits a tricritical point. We investigate the new scaling scenario and calculate the relevant critical exponents, by analytical and computational methods, for Erdős-Rényi networks and 2D square lattices.
Multiplex networks describe a large variety of complex systems, including infrastructures, transportation networks, and biological systems. Most of these networks feature a significant link overlap. It is therefore of particular importance to characterize the mutually connected giant component in these networks. Here we provide a message passing theory for characterizing the percolation transition in multiplex networks with link overlap and an arbitrary number of layers M. Specifically we propose and compare two message passing algorithms that generalize the algorithm widely used to study the percolation transition in multiplex networks without link overlap. The first algorithm describes a directed percolation transition and admits an epidemic spreading interpretation. The second algorithm describes the emergence of the mutually connected giant component, that is the percolation transition, but does not preserve the epidemic spreading interpretation. We obtain the phase diagrams for the percolation and directed percolation transition in simple representative cases. We demonstrate that for the same multiplex network structure, in which the directed percolation transition has nontrivial tricritical points, the percolation transition has a discontinuous phase transition, with the exception of the trivial case in which all the layers completely overlap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.