As for other types of malignancy, colorectal cancer is not a homogeneous disease but actually comprises multiple entities that vary in natural history and molecular pathogenesis. This heterogeneity explains why molecular cancer therapeutics against individual disease driver targets have proven to be effective in only a fraction of cases. One prototypical example is provided by the anti-epidermal growth factor receptor (EGFR) monoclonal antibodies cetuximab and panitumumab, which are approved for the treatment of metastatic colorectal cancer. In unselected patients, the extent of clinical benefit from monotherapy with either drug hovers near the threshold for statistical significance, with response rates of approximately 10% ( 3-5 ).The population of potential responders has been recently enriched thanks to a biomarker-development strategy that is driven by the plausible biological rationale that constitutive activation of signaling pathways parallel to or downstream from EGFR, such as the RAS-RAF axis, should circumvent EGFR inhibition and therefore preclude sensitivity to EGFRtargeted agents ( 6 ). Indeed, the authors of both retrospective and prospective trials have convincingly demonstrated the inefficacy of EGFR-neutralizing antibodies in metastatic colorectal cancer patients with common (codons 12 and 13) KRAS mutations ( 7-12 ).Along this line, in a number of retrospective studies investigators have provided initial evidence that rare KRAS mutations as well as NRAS , BRAF , and (possibly) PIK3CA mutations also are significantly associated with low response rates ( 13-16 ). When considering the cumulative incidence of Only a fraction of patients with metastatic colorectal cancer receive clinical benefit from therapy with anti-epidermal growth factor receptor (EGFR) antibodies, which calls for the identification of novel biomarkers for better personalized medicine. We produced large xenograft cohorts from 85 patient-derived, genetically characterized metastatic colorectal cancer samples ("xenopatients") to discover novel determinants of therapeutic response and new oncoprotein targets. Serially passaged tumors retained the morphologic and genomic features of their original counterparts. A validation trial confirmed the robustness of this approach: xenopatients responded to the anti-EGFR antibody cetuximab with rates and extents analogous to those observed in the clinic and could be prospectively stratified as responders or nonresponders on the basis of several predictive biomarkers. Genotype-response correlations indicated HER2 amplification specifically in a subset of cetuximab-resistant, KRAS/NRAS/BRAF/PIK3CA wild-type cases. Importantly, HER2 amplification was also enriched in clinically nonresponsive KRAS wild-type patients. A proof-of-concept, multiarm study in HER2-amplified xenopatients revealed that the combined inhibition of HER2 and EGFR induced overt, long-lasting tumor regression. Our results suggest promising therapeutic opportunities in cetuximab-resistant patients with metastatic colorectal ca...
MicroRNAs are endogenous non-coding RNAs which negatively regulate the expression of protein-coding genes in plants and animals. They are known to play an important role in several biological processes and, together with transcription factors, form a complex and highly interconnected regulatory network. Looking at the structure of this network, it is possible to recognize a few overrepresented motifs which are expected to perform important elementary regulatory functions. Among them, a special role is played by the microRNA-mediated feedforward loop in which a master transcription factor regulates a microRNA and, together with it, a set of target genes. In this paper we show analytically and through simulations that the incoherent version of this motif can couple the fine-tuning of a target protein level with an efficient noise control, thus conferring precision and stability to the overall gene expression program, especially in the presence of fluctuations in upstream regulators. Among the other results, a nontrivial prediction of our model is that the optimal attenuation of fluctuations coincides with a modest repression of the target expression. This feature is coherent with the expected fine-tuning function and in agreement with experimental observations of the actual impact of a wide class of microRNAs on the protein output of their targets. Finally, we describe the impact on noise-buffering efficiency of the cross-talk between microRNA targets that can naturally arise if the microRNA-mediated circuit is not considered as isolated, but embedded in a larger network of regulations.
Studies on gene and/or microRNA (miRNA) dysregulation in the early stages of hepatocarcinogenesis are hampered by the difficulty of diagnosing early lesions in humans. Experimental models recapitulating human hepatocellular carcinoma (HCC) are then used to perform this analysis. We performed miRNA and gene expression profiling to characterize the molecular events involved in the multistep process of hepatocarcinogenesis in the resistant-hepatocyte rat model. A high percentage of dysregulated miRNAs/ genes in HCC were similarly altered in early preneoplastic lesions positive for the stem/ progenitor cell marker cytokeratin-19, indicating that several HCC-associated alterations occur from the very beginning of the carcinogenic process. Our analysis also identified miRNA/gene-target networks aberrantly activated at the initial stage of hepatocarcinogenesis. Activation of the nuclear factor erythroid related factor 2 (NRF2) pathway and up-regulation of the miR-200 family were among the most prominent changes. The relevance of these alterations in the development of HCC was confirmed by the observation that NRF2 silencing impaired while miR-200a overexpression promoted HCC cell proliferation in vitro. Moreover, T3-induced in vivo inhibition of the NRF2 pathway accompanied the regression of cytokeratin-19-positive nodules, suggesting that activation of this transcription factor contributes to the onset and progression of preneoplastic lesions towards malignancy. The finding that 78% of genes and 57% of dysregulated miRNAs in rat HCC have been previously associated with human HCC as well underlines the translational value of our results. Conclusion: This study indicates that most of the molecular changes found in HCC occur in the very early stages of hepatocarcinogenesis. Among these, the NRF2 pathway plays a relevant role and may represent a new therapeutic target. (HEPATOLOGY 2014;59:228-241) H epatocellular carcinoma (HCC) is the third cause of cancer-related deaths worldwide and a major health problem. Liver cirrhosis is the underlying disease in more than 80% of cases and can be due to different etiologies such as hepatitis B and C, and nonalcoholic and alcoholic fatty liver disease. 1
BackgroundTranscription Factors (TFs) and microRNAs (miRNAs) are key players for gene expression regulation in higher eukaryotes. In the last years, a large amount of bioinformatic studies were devoted to the elucidation of transcriptional and post-transcriptional (mostly miRNA-mediated) regulatory interactions, but little is known about the interplay between them.DescriptionHere we describe a dynamic web-accessible database, , supporting a genome-wide transcriptional and post-transcriptional regulatory network integration, for the human and mouse genomes, based on a bioinformatic sequence-analysis approach. In particular, is currently focused on the study of mixed miRNA/TF Feed-Forward regulatory Loops (FFLs), i.e. elementary circuits in which a master TF regulates an miRNA and together with it a set of Joint Target protein-coding genes. The database was constructed using an ab-initio oligo analysis procedure for the identification of the transcriptional and post-transcriptional interactions. Several external sources of information were then pooled together to obtain the functional annotation of the proposed interactions. Results for human and mouse genomes are presented in an integrated web tool, that allows users to explore the circuits, investigate their sequence and functional properties and thus suggest possible biological experiments.ConclusionsWe present , a web-server devoted to the study of human and mouse mixed miRNA/TF Feed-Forward regulatory circuits, freely available at: http://biocluster.di.unito.it/circuits/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.