The ubiquity of communication devices such as smartphones has led to the emergence of context-aware services that are able to respond to specific user activities or contexts. These services allow communication providers to develop new, added-value services for a wide range of applications such as social networking, elderly care, and near-emergency early warning systems. At the core of these services is the ability to detect specific physical settings or the context a user is in, using either internal or external sensors. For example, using built-in accelerometers it is possible to determine if a user is walking or running at a specific time of day. By correlating this knowledge with GPS data it is possible to provide specific information services to users with similar daily routines. This article presents a survey of the techniques for extracting this activity information from raw accelerometer data. The techniques that can be implemented in mobile devices range from classical signal processing techniques such as FFT to contemporary string-based methods. We present experimental results to compare and evaluate the accuracy of the various techniques using real data sets collected from daily activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.